67 research outputs found

    Effects of tool geometry and process parameters on delamination in CFRP drilling: An overview

    Get PDF
    Fiber reinforced polymers (FRPs) show advantageous physical-mechanical, thermal, and dielectric characteristics, making them promising candidates for weight reduction in structural applications. However, machinability is often difficult because of the specificity of their structure. This paper highlights the latest advances in CFRP drilling. Key papers are analyzed with respect to workpiece materials, geometrical tool features, and input variables (such as variation in process parameters). The influence of tool geometry and process parameters on workpiece delamination and hole quality/integrity represents the primary focus of this review. In addition, some new data are presented and discussed

    High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity

    Get PDF
    Heat resistant gammatitaniumaluminidesareintermetallicalloysplannedtobewidelyusedinhigh- performanceaircraftengineswithinthenextfewyears.Thisapplicationfieldisascribedtothe exceptionalmaterialproperties,especiallythelowdensityandauniquestrength-to-weightratiofor titanium-basedalloys,goodoxidationbehaviourandthermalstability,limitedductilityandfracture toughnessbelowbrittle-to-ductiletransition,andgoodcreepresistance. The demandingmachinabilityofgammatitaniumaluminidescanbetracedbacktothesedesirable materialproperties.Consequently,cuttingprocessadaptationisessentialtoobtaincomponents suitabletosatisfystrongregulationsregardingsurfaceintegrity,withoutneglectinganeconomical production.Previousresearchactivitiesconfirmedthatthermalmaterialsofteningduringcuttingdue to thehighspeedmachiningisakeytoreachhighqualitysurfaces,buttoolwearwasidentifiedasthe limitingfactor. The relativelyhighcuttingspeedresultsinhightemperaturesintheshearzoneandthelowthermal conductivityofthe g-TiAl workpiecematerialleadstoanextremethermaltoolload.Furthermore,in combinationwiththeformationofsaw-toothchipsandthediscontinuousflowofthechipalongthe rake face,adhesiveweariscaused. The influenceofconventionalfloodcoolingandhighpressurelubricoolantsupply(wetconditions), cryogeniccoolingwithliquidnitrogen,andminimumquantitylubrication(MQL)wereinvestigatedin longitudinalexternalturningoperations.Toolwear,cuttingforces,chipmorphologyandsurface roughnesswereevaluated.Surfaceintegritywasanalysedintermsofmachinedsurfacedefectsand sub-surfacealterations. The investigationsindicatethatcryogeniccoolingisthemostpromisinglubricationstrategy, meaningthatthethermodynamicalimpactoftheexpandingliquidnitrogenapplieddirectlyclose to thecuttingzonesuccessfullycounteractthehugethermalloadonthetoolcuttingedges,providing potentiallyenormousbenefitsintermsoftoolwearreductionandconsequentsurfacequality improvemen

    Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide

    Get PDF
    Gamma titanium aluminides are intermetallic alloys. Recently, they have been evaluated as important contenders for structural applications in the automotive and aerospace sectors. This is due to their excellent high-temperature performances and their significantly lower density compared to Nickel-based superalloys. In this paper, an analysis of machinability of a gamma TiAl obtained via an electron beam melting (EBM) process is presented. The effects of tool geometry modifications, in terms of cutting tool angles and cutting edge preparation, were investigated. The reduction of radial rake angle and the drag finishing process for cutting edge preparation resulted in an increase of the tool life of the carbide end mills. Nanogradient tool coatings were also observed to affect tool wear during milling tests, and the results highlight that AlSiTiN coating performs better compared to CrAlSiN coating. A post-coating polishing treatment was also taken into account, and it allowed a further reduction of tool wear. The overall results indicate that the machinability of this difficult-to-cut material can be significantly improved by an adjustment of the cutting edge geometry, and by using an AlSiTiN coating syste

    Performance assessment of a vibro-finishing technology for additively manufactured components

    Get PDF
    Metal components produced by Additive Manufacturing (AM) technologies usually exhibit a rough surface, that in certain applications can result detrimental for the part’s functionality. Thus, it is of great interest to study the finishing processes that can be applied to the surfaces, both external and internal, of AM components. The aim of this work is the evaluation of the capabilities of a vibro-finishing process in the treatment of samples produced by Laser-Powder Bed Fusion (L-PBF) from AlSi10Mg powders. In this research, the abrasive media is identified, and the surface quality improvement is analysed in terms of surface roughness and modifications induced by the finishing treatment (i.e., edge rounding, material loss) against finishing duration. The cost of the treatment is also evaluated

    Experimental and numerical characterization of a mechanical expansion process for thin-walled tubes

    Get PDF
    Air heat exchangers are made with tubes joined to finned pack. The connection between tubes and fins can be obtained through a mechanical process where an ogive is pushed inside the tube with smaller internal diameter causing its expansion. Residual plastic deformation provides the assembly with the fins. Accurate connection over the whole contact area of the tubes and fins is essential for maximum heat exchange efficiency. The goal of this work is to study and develop a finite element model able to effectively simulate expansion forming, allowing process analysis and, eventually, process optimization. The paper is divided into a first experimental part, where the materials used for the heat exchangers are characterized, and a second numerical part where models have been developed on the basis of the experimental data. The developed models are used to identify the material properties with an inverse method, and then to study the technological process of tube expansion by using a simplified but sufficiently accurate description. The model has proved to be an effective design tool, as it can evaluate the influence of the main parameters on the process and so optimize production according to technological variations
    • …
    corecore