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ABSTRACT. Chip removal and the formation of a round profile are complex questions in centerless 
grinding. The shape assumed by the part during every single instant of the machining operation depends 
essentially on its relative position with respect to the operating grinding wheel. This position is function of 
an elevated number of factors. 
The aim of this paper is the determination of the profile resulting from a grinding operation, taking into 
account the original shape of the part, the machine, the tools and the contact between tools and part.  
After an analysis of the pre-existing models, a new approach is proposed based on the discretization of the 
system in parallel planes that takes into account the deformability of the part axis, generated by the cutting 
forces and by the reaction forces of regulating wheel and workblade. 
 
1    INTRODUCTION 
 
Centerless grinding is a chip removal process in which the workpiece is not clamped, but it is 
just supported by a “V” formed by the regulating wheel, the grinding wheel and a workblade. A 
schematic picture of a centerless grinding machine is represented in Figure 1. 
 

 
 

FIGURE 1. Scheme of the centerless grinding machine 
 
This configuration is quite advantageous, since it allows a simple and easy load/unload 
operations with minimal interruption of the process. 
On the other hand, the floating centre of the workpiece easily generates problems of roundness 
errors. Such errors given the particular configuration of the machine, produce a displacement of 
the part centre, that lead to an error regeneration mechanism. 
Several researchers have studied the origin and evolution of the roundness errors in centerless 
grinding [1–4]. These researches have shown that geometric and dynamic causes can produce 
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instabilities. In particular, geometric instabilities are typical of centerless grinding and they are 
produced as a consequence of the geometric configuration of the machine, independent of the 
structural characteristics and the workpiece angular velocity. In addition, the compliance of the 
part can add dynamic effects to such phenomenon, limiting the geometric accuracy and the 
surface quality of the workpieces [5]. 
In this paper a simple model for the description of the centerless grinding process is presented, 
aimed at forecasting the geometrical error of the part, knowing the part characteristics and the 
process parameters. 
 
2    PROPOSED MODEL 
 
The models proposed in the literature do not allow an accurate study of the machine geometry, 
the main limitation being that they are mostly bidimensional [5,6 and ref. therein].  
The proposed model is based on a geometrical representation of the tools, described as a surface 
in a 3D space, and on a discrete representation of the part shape, through a series of functions 
rw(φ), that give, in form of cylindrical coordinates, the distance of the points of the part surface 
from a reference axis, in correspondence of some perpendicular sections, see Figure 2. 

 
FIGURE 2. Part shape definition 

 
The approach is to section the system with planes perpendicular to the part axis. On each plane 
is therefore possible to determine the position of the part axis, and therefore to compute the 
amount of material removed by the operating wheel. The part axis can undergo elastic 
deformation under the forces originated during machining. 
The equations representing analytically the wheels and the workblade surfaces are computed in 
function of the position of the slides, to take into account the machine registration parameters. 
Nonlinearities, given by the irregular part shape, the curvature of the wheels, the holonomic 
position constraints and the deformation of the part, make necessary an recursive computation.  
The main feature of the model is the computation of the position assumed in every time instant 
by the part, with respect to the machine, taking into account for the part compliance. 
 
2.1   GEOMETRICAL DEFINITION OF THE TOOLS 
 
Several reference systems are used in the presented model, each one solid with one of the 
independently moving parts of the machine. In Figure 3 the reference systems are illustrated. To 
pass from one reference system to the other a set of transformation matrixes has been used. 
The grinding wheel surface is computed as the surface generated by the revolution of the 
straight line representing the path of the diamond tool for the regeneration of the operating 
wheel. Being O0x0y0z0 the grinding wheel space, the grinding wheel surface equation is: 
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Where D0 and D1 are two points, with known coordinates, laying the straight path of the 
diamond tool. 
With the same procedure, being O5x5y5z5 the regulating wheel space, the regulating wheel 
surface equation is: 
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Where D0 and D1 are two points, with known coordinates, on the straight path of the diamond 
tool for the regeneration of the regulating wheel 
The workblade surface equation, being O2x2y2z2 the workblade space, is: 

θθ tantan 2222 pp xyxy −−+     (3) 
Where x2p and y2p are the coordinates of a P point on the blade surface, and θ the inclination 
angle of the blade surface with respect to the horizontal. 
 
2.2   PART-TOOLS CONTACT 
 
As for the contact points between the part and the regulating wheel and the workblade, they are 
computed for each part section with a recursive approach. With reference to Figure 3, the steps 
are the following:  

a) a first approximation of the angular position of the contact points is given, starting 
from the ideal geometry 

b) the provisional position of the centre Ow of the section is individuated 
c) the provisional position of the contact point with the regulating wheel is computed; if 

the angular position of the perpendicular to the wheel profile does not correspond to 
the ideal angles, there is no contact 

d) therefore new angular positions are assumed, based on the perpendiculars to the tool 
profiles and the process is repeated recursively until the error is small enough. 

 

 
FIGURE 3. Determination of the part centre Ow as intersection of the workblade profile and of the 

regulating wheel, translated respectively of rwb and rrw 

grinding wheel regulating wheel



Once the section centre Ow has been determined, its distance from the operating wheel is 
determined. The radius of the part is computed recursively for each part rotation and is the 
minimum between the value computed at revolution n and the value computed at revolution 
n+1. The grinding wheel is here assumed to be a circumference. 
The part-tools contact points are computed at the same time for all the part sections 
perpendicular to the part axis. The model computes a matrix containing in each column the 
coordinates of the centres of each section and a vector with the inclination angles of the 
perpendiculars to the regulating wheel in the contact points. 
 
2.3   PART DEFORMABILITY 
 
The approach consists of computing the deformed part to calculate the constraint reactions 
needed to keep the part in that position and then to evaluate if such forces are applicable. If this 
is not the case, the algorithm modifies the part deformed shape and computes again the 
constraint forces in order to achieve an acceptable solution. This is recursively performed for 
each part rotation. Each step requires a new computation of the part sections’ centres. 
The correction of the axis curvature is then applied when the position of the centres is 
computed, by taking into consideration the radii obtained from the part geometry, increased by 
the local displacement between the part itself and the bearing surfaces. 
In Figure 4 an example is reported of the computation of the characteristics of the forces and 
torques applied on the yz plane, based on the part deformation projected on the same plane. The 
same computation is performed on the xz plane. To simplify the example, the centre of each 
disk, in which we can imagine to partition the part, is considered at a unit distance, along the z 
axis, from the adjacent centres. The values of the elastic modulus E and of the inertia moment 
of the section Iy are taken, in this example, equal to 1. 
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FIGURE 4. Simplified example of computation of the stress characteristics on the yz plane. M is the 
bending moment, T is the shear stress and F is the force 



2.4 EXCHANGED FORCES 
 
The cutting forces that are exchanged between the grinding wheel and the part during the 
machining depend on the chip section, on the cutting parameters, on the cutting fluid and on the 
characteristics of the grinding wheel and of the part.  
In the presented model, the cutting force is computed using the well known cutting pressure 
method, i.e., by multiplying the cutting pressure by the chip section S: 

F=Ks S      (4) 
where S=b hm and Ks = Ks0 h-z, with Ks0 specific cutting pressure, h chip thickness, hm, its mean 
value, b chip width and z experimental exponent. Ks0 and z depend on the part material, cutting 
angles, tool material, cutting conditions in general. For further details, refer to [7]. 
The regulating wheel applies a tangential force to the part Frt. If we neglect the tangential forces 
applied by the workblade, the torque generated by the cutting force must be equal and opposite 
to the torque generated by the tangential force applied by the regulating wheel, on all the ns part 
sections: 

w
n

wtw
n

rt rFrF
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∑∑ =      (5) 

Where Fwt is the tangential cutting force. We assume that the tangential cutting force in each 
section is equilibrated by the regulating wheel force acting on the same section. For those 
sections in which there is no contact with the regulating wheel, the Fwt is equally partitioned 
between the two adjacent sections. 
 
2.5   RIGID BODY EQUILIBRIUM 
 
If the resulting of the external forces applied to the part is external to the contact points with the 
workblade and regulating wheel, a rigid rotation is determined on the part, with a variation of 
the contact points until the force is again internal. 
The modulus and z coordinate of the equivalent force to the forces normal to the workblade is 
given by: 
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While the same quantities for the regulating wheel are given by: 
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2.6   SHAPE VARIATIONS PROPORTIONAL TO THE FORCES 
 
For each section of the part, the displacement with respect to the adjacent sections is computed 
by using a set of stiffness parameters contained in a vector kshape. As an example, the rigidity 
parameters relevant to the case of an internal section displacement are shown in the following 
Figure 5. In this particular example, we obtain: kshape > 6EI/Δz3. 
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FIGURE 5. Deformation forces due to a displacement e of an internal section of the part 

 
When the cutting forces are also included in the balance, kshape must be further increased.  
A displacement e of a part section from the workblade produces an increase of the deformation 
forces that push that section towards the workblade, but produces as well a variation of the 
normal machining forces: 

ekF wnwn ⋅⋅′−=Δ ε      (10) 
This variation affects the forces exchanged with the workblade according to the equation: 

( ) ( )( ) ( ) ( )( ) ( ) ekFFF wnwnwnwb ⋅⋅≈
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The tangential machining forces, on the other hand, undergo the following variation: 
ekF wtwt ⋅⋅′−=Δ ε      (12) 

This variation affects the forces exchanged with the workblade according to the equation: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ekFFF wtwtwtwb ⋅⋅−≈
−
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cos
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A displacement e of a part section from the regulating wheel produces a variation of the normal 
machining forces: 

( ) ekF wnwn ⋅⋅−=Δ ε1      (14) 
This variation affects the forces exchanged with the workblade according to the equation: 
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The tangential machining forces, on the other hand, undergo the following variation: 
( ) ekF wtwt ⋅⋅−=Δ ε1      (16) 

This variation affects the forces exchanged with the workblade according to the equation: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ekFFF wtwtwtwb ⋅≈
−

−⋅−−Δ−Δ=
αθ

θθαβαβ
cos

1sin,coscoscos,sinsin  (17) 

The variations of wbrΔ  and rwrΔ  generate a transversal displacement of each part section that 
will affect, in the next iteration, the value of the deformation forces of the next sections. These 
last will therefore undergo a displacement, to compensate such force variation. 
We can introduce the terms 3wbrΔΔ  and 3rwrΔΔ , computed based on the influence of the 
displacement of the next sections; if the distances wrΔΔ , of all the ns sections, and their 
variations are gathered in vectors of length ns, the elements 3wbrΔΔ  and 3rwrΔΔ  can be computed 
at the same time with the equation: 

{ } [ ] { } { } { }( )2133 ,max wbwbwbwb rrrCr ΔΔ+ΔΔΔ−=ΔΔ   (18) 

{ } [ ] { } { } { }( )2133 ,max rwrwrwrw rrrCr ΔΔ+ΔΔΔ−=ΔΔ   (19) 
Where in the matrix C3, the generic term i-jth represents the influence on section i of the 
displacement of section j. 
The first column of matrix C3 contains the terms affecting the shearing of the first section on all 
the others, while the elements of the second column are referred to the displacement of the 
second section, and so on. Therefore, if we consider: 
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As a conclusion, if we put together the three variations, we obtain: 
( )321,0max wbwbwbwbwb rrrrr ΔΔ+ΔΔ+ΔΔ+Δ=Δ   (22) 

( )321,0max rwrwrwrwrw rrrrr ΔΔ+ΔΔ+ΔΔ+Δ=Δ   (23) 
 
 
 



3    SIMULATION TESTS 
 
Several simulation tests have been performed to study the effects of the geometrical machine set 
up on the final part shape. 
The simulation tests have been first performed by introducing a sinus disturbance on the contact 
position of the part with the operating wheel. This test has been carried out to test the model 
reaction to a disturbance that can come from an eccentricity of the rotation axis, or from a mass 
disequilibrium generating a tool vibration. The goal of the simulation is to measure the effects 
of these disturbances on the roundness error of the part and on the amplitude of the waviness of 
the final profile, in order to understand when the errors can be compensated or if they are self-
regenerating. 
To this purpose, we define the ratio between the frequency of the disturbance and the rotational 
speed of the part: 

w

g

N
N

k =      (24) 

The results of these first simulations are reported in Tables 1 and 2, where the roundness errors, 
the order and amplitude of the main harmonic as a function of the k coefficient, are reported. In 
the tables, kmax is the order of the larger harmonic, among those forming the part profile, while 
a(kmax) is its amplitude. Table 1 refers to a disturbance with amplitude 1 μm, while Table 2 
refers to a disturbance with amplitude 10 μm. 
 

TABLE 1. Roundness error and characteristics of the main harmonic as a function of k in the case of a 
disturbance with amplitude 1 μm 

k ht [μm] kmax a(kmax) [μm]  k ht [μm] kmax a(kmax) [μm] 
0 0.54 3÷5÷7 0.1  12 2.03 12 0.6 

3.5 1.76 7 0.5  12.5 1.25 25 0.25 
4 1.53 4 0.5  13 2.30 13 0.8 

4.5 2.17 5 0.6  13.5 5.21 13 1.3 
5 2.20 5 0.7  14 1.88 14 0.6 

5.5 3.94 5 1.3  14.5 0.94 29 0.2 
6 2.11 6 0.6  15 2.01 15 0.8 

6.5 2.35 7 0.5  15.5 6.03 15 1.3 
7 2.28 7 0.7  16 1.94 16 0.7 

7.5 3.77 7 1.2  16.5 0.96 33 0.2 
8 1.89 8 0.5  17 1.85 17 0.7 

8.5 1.52 17 0.3  17.5 6.33 17 1.5 
9 2.91 9 1.3  18 2.12 18 0.81 

9.5 2.79 9 0.6  18.5 1.10 37 0.2 
10 1.57 10 0.6  19 2.03 19 0.7 

10.5 1.26 21 0.3  19.5 6.76 20 0.5 
11 2.45 11 0.8  20 2.03 20 0.8 

11.5 5.37 11 1.4      



TABLE 2. Roundness error and characteristics of the main harmonic as a function of k in the case of a 
disturbance with amplitude 10μm 

k ht [μm] kmax a(kmax) [μm]  k ht [μm] kmax a(kmax) [μm] 
0 0.54 3÷5÷7 0.1  11.5 11.82 23 3.5 

3.5 31.94 7 13.0  12 13.64 12 6.5 
4 11.87 4 5.0  12.5 6.23 25 2.5 

4.5 8.29 9 2.5  13 20.78 13 10.0 
5 48.86 5 25.0  13.5 12.11 27 3.0 

5.5 19.04 11 8.0  14 13.20 14 6.2 
6 12.77 6 5.6  14.5 5.72 29 2.3 

6.2 6.02 6 1.2  15 16.90 15 8.0 
6.5 10.32 13 1.8  15.5 10.75 31 2.9 
6.7 12.83 7 3.5  16 14.08 16 6.9 
7 44.87 7 22.0  16.5 6.07 33 2.3 

7.5 15.35 15 5.0  17 14.71 17 7.0 
8 11.20 8 5.5  17.5 11.66 35 2.9 

8.5 10.13 17 2.2  18 17.71 18 8.5 
9 26.55 9 13.0  18.5 6.63 37 2.4 

9.5 15.58 19 4.5  19 15.34 19 7.3 
10 11.91 10 5.6  19.5 12.11 39 3.1 

10.5 7.65 21 2.3  20 16.48 20 8.2 
11 21.12 11 10.0  20.5 5.64 41 2.3 

 
Further simulations have been run, introducing a sinusoidal disturbance in the contact position 
with the regulating wheel. Such simulations are not reported for lack of space. Interesting 
results have been obtained in the simulation of the detachments of the part from the workblade 
and the regulating wheel. As a consequence of such detachments, the average part radius is not 
constant along the part length and in some sections of the part we obtain a two-lobes profile.  
Figure 6 reports the difference from the linear behaviour of the radii along the part length, 
referred to two different working heights. Figures 7 and 8 show the results on the profile 
analysis carried out on two sections of the part that during the simulation were detached from 
the tools. The difference from the ideal profile is shown, and the corresponding amplitudes ak of 
the harmonics obtained through a profile Fourier analysis. 

 
FIGURE 6. Difference from linearity along the part axis for the two working heights above centres h=0 

mm (a) and h=10 mm (b). The slide rotation ϕ1, corresponds to 10’ 



 
 

FIGURE 7. Roundness error in section 2 of the part and corresponding amplitudes ak of the harmonics: the 
main harmonic is of order 2 

 

 
 

FIGURE 8. Roundness error in section 3 of the part and corresponding amplitudes ak of the harmonics: the 
main harmonic is of order 3 

 
4    EXPERIMENTAL RESULTS 
The main experimental conditions are reported in Table 3. Four samples for each parameter 
combination have been machined, and the average diameter of each section are reported in 
Figures 9 and 10, that represent the difference between the real and the ideal value of the part 
radius, corresponding to ϕ1=ϕ5=ϕ6=0°. In these Figures the results of some experimental tests 
vs. the results of the corresponding simulations in terms of average value of 4 repetitions are 
reported. The figures show that the slide rotational angle ϕ1, the regulating wheel registration 
angle ϕ5 and the regulating wheel regeneration angle ϕ6, they all affect the part average radius 
along the part length. The differences in terms of average radius between the most external 
sections can also be found in Table 4.  
 
 



TABLE 3. Main parameters of the experimental tests 
 

Machine BMS 101/001 
Operating wheel diameter 440 mm 
Regulating wheel diameter 300 mm 
External part diameter 25 mm 
Internal part diameter 13 mm 
Part length lp 280 mm 
Part material Carbon Steel AISI 1040 
Number and thickness of considered sections ns = 13; 20 mm 
Slide registration angle ϕ1 -10’; 0’; 10’; 20’ 
Regulating wheel registration angle ϕ5 0.5°; 1.0°; 1.5° 
Regulating wheel regenerating angle ϕ6 0°; 1°  
Height over the centres of the part h 0 ÷ 10 mm 
Number of repetitions for each parameters’ set 4 

 

 
(a)     (b) 

FIGURE 9. Average part radius along the axis, for three values of the rotation angle of the slide ϕ1; height 
above centers h = 0 mm (a) and 10 mm (b). Continuous lines represent the experiments, dotted lines 

represent the simulations 
 

 
(a)     (b) 

FIGURE 10. Average part radius along the axis, for three values of the rotation angle of the regulating 
wheel ϕ5; height above centers h = 0 mm (a) and 10 mm (b). Continuous lines represent the experiments, 

dotted lines represent the simulations 
 



TABLE 4. Comparison of the experimental and simulated radius differences between the most external 
sections 

 
Conditions Experimental r0(13)-r0(1) Simulated r0(13)-r0(1) 

h = 0 mm; ϕ1 = 20’; ϕ5=ϕ6=0° 21 μm 21.8 μm 
h = 10 mm; ϕ1 = 20’; ϕ5=ϕ6=0° 22 μm 23.8 μm 

 
 
5    CONCLUSION 
 
In this paper a numerical simulation method of the centerless grinding process has been 
presented. The method allows to forecast the part surface geometry as the geometrical process 
parameters vary. 
The introduction in the model of all the geometrical set up parameters of the grinding machine 
and of the elastic response of the part allows to obtain satisfactory results in terms of shape 
error evaluation on the machined parts. 
The model allows to forecast the formation of the shape defects that have geometrical origin, 
such as taper angles, concavity, number of lobes in the final part. Further, the roundness error 
can be forecast.  
As for the errors that have dynamical origin, the model evaluates the interference of the part 
geometry with disturbances having a pre-defined law, without taking into account the problems 
regarding the self-excited vibrations of the system. 
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