103 research outputs found

    Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is the most common, pediatric, extra-cranial, malignant solid tumor. Despite multimodal therapeutic protocols, outcome for children with a high-risk clinical phenotype remains poor, with long-term survival still less than 40%. Hereby, we evaluated the potential of non-coding RNA expression to predict outcome in high-risk, stage 4 neuroblastoma.</p> <p>Methods</p> <p>We analyzed expression of 481 Ultra Conserved Regions (UCRs) by reverse transcription-quantitative real-time PCR and of 723 microRNAs by microarrays in 34 high-risk, stage 4 neuroblastoma patients.</p> <p>Results</p> <p>First, the comparison of 8 short- versus 12 long-term survivors showed that 54 UCRs were significantly (<it>P </it>< 0.0491) over-expressed in the former group. For 48 Ultra Conserved Region (UCRs) the expression levels above the cut-off values defined by ROC curves were strongly associated with good-outcome (OS: 0.0001 <<it>P </it>< 0.0185, EFS: 0.0001 <<it>P </it>< 0.0491). Then we tested the Transcribed-UCR (T-UCR) threshold risk-prediction model on an independent cohort of 14 patients. The expression profile of 28 T-UCRs was significantly associated to prognosis and at least 15 up-regulated T-UCRs are needed to discriminate (<it>P </it>< 0.0001) short- from long-survivors at the highest sensitivity and specificity (94.12%). We also identified a signature of 13 microRNAs differently expressed between long- and short-surviving patients. The comparative analysis of the two classes of non-coding RNAs disclosed that 9 T-UCRs display their expression level that are inversely correlated with expression of 5 complementary microRNAs of the signature, indicating a negative regulation of T-UCRs by direct interaction with microRNAs. Moreover, 4 microRNAs down-regulated in tumors of long-survivors target 3 genes implicated in neuronal differentiation, that are known to be over-expressed in low-risk tumors.</p> <p>Conclusions</p> <p>Our pilot study suggests that a deregulation of the microRNA/T-UCR network may play an important role in the pathogenesis of neuroblastoma. After further validation on a larger independent set of samples, such findings may be applied as the first T-UCR prognostic signature for high-risk neuroblastoma patients.</p

    A study of the transverse fluctuations of hadronic showers in the NOMAD electromagnetic calorimeter

    Get PDF
    The transverse shower shape of the energy deposition of hadrons in the NOMAD lead glass calorimeter has been studied by exposing a prototype of this calorimeter to pion test beams of various momenta and incident angles. Large event to event fluctuations in the shower shape and significant energy depositions far from the incident hadron were observed making it difficult to associate all the deposited energy to the incident hadron that caused it. Since in the NOMAD detector the momenta of charged hadrons are measured by a magnetic spectrometer, such an association is necessary to be able to subtract from the calorimeter all the energy caused by the observed charged hadrons in order to avoid double counting. Probability functions based on the measurements have been developed to describe fluctuations of the lateral shower shape.\ Starting from these functions, an algorithm is developed for identifying the energy deposition associated to a charged hadron.\ The identification and separation of overlapping showers based on these functions is also discussed. The Monte Carlo simulation of the calorimeter reproduces the test beam data well therefore allowing the application of the algorithm at angles and momenta not studied in the test beam

    Transcriptome characterization of the South African abalone Haliotis midae using sequencing-by-synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide, the genus <it>Haliotis </it>is represented by 56 extant species and several of these are commercially cultured. Among the six abalone species found in South Africa, <it>Haliotis midae </it>is the only aquacultured species. Despite its economic importance, genomic sequence resources for <it>H. midae</it>, and for abalone in general, are still scarce. Next generation sequencing technologies provide a fast and efficient tool to generate large sequence collections that can be used to characterize the transcriptome and identify expressed genes associated with economically important traits like growth and disease resistance.</p> <p>Results</p> <p>More than 25 million short reads generated by the Illumina Genome Analyzer were <it>de novo </it>assembled in 22,761 contigs with an average size of 260 bp. With a stringent <it>E</it>-value threshold of 10<sup>-10</sup>, 3,841 contigs (16.8%) had a BLAST homologous match against the Genbank non-redundant (NR) protein database. Most of these sequences were annotated using the gene ontology (GO) and eukaryotic orthologous groups of proteins (KOG) databases and assigned to various functional categories. According to annotation results, many gene families involved in immune response were identified. Thousands of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were detected. Setting stringent parameters to ensure a high probability of amplification, 420 primer pairs in 181 contigs containing SSR loci were designed.</p> <p>Conclusion</p> <p>This data represents the most comprehensive genomic resource for the South African abalone <it>H. midae </it>to date. The amount of assembled sequences demonstrated the utility of the Illumina sequencing technology in the transcriptome characterization of a non-model species. It allowed the development of several markers and the identification of promising candidate genes for future studies on population and functional genomics in <it>H. midae </it>and in other abalone species.</p

    The NOMAD experiment at the CERN SPS

    Get PDF
    The NOMAD experiment is a short base-line search for νμντ\nu_{\mu}\rightarrow \nu_{\tau} oscillations in the CERN neutrino beam. The ντ\nu_{\tau}'s are searched for through their charged-current interactions followed by the observation of the resulting τ\tau^{-} through its electronic, muonic or hadronic decays. These decays are recognized using kinematical criteria necessitating the use of a light target which enables the reconstruction of individual particles produced in the neutrino interactions. This paper describes the various components of the NOMAD detector: the target and muon drift chambers, the electromagnetic and hadronic calorimeters, the preshower and transition radiation detectors, and the veto and trigger scintillation counters. The beam and data acquisition system are also described. The quality of the reconstruction of individual particles is demonstrated through the ability of NOMAD to observe Ks0^0_{\rm s}'s, Λ0\Lambda^0's and π0\pi^0's. Finally, the observation of τ\tau^{-} through its electronic decay being one of the most promising channels in the search, the identification of electrons in NOMAD is discussed

    52 Genetic Loci Influencing Myocardial Mass.

    Get PDF
    BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure
    corecore