65 research outputs found

    Design of the EnVisS instrument optical head

    Get PDF
    The EnVisS (Entire Visible Sky) instrument is one of the payloads of the European Space Agency Comet Interceptor mission. The aim of the mission is the study of a dynamically new comet, i.e. a comet that never travelled through the solar system, or an interstellar object, entering the inner solar system. As the mission three-spacecraft system passes through the comet coma, the EnVisS instrument maps the sky, as viewed from the interior of the comet tail, providing information on the dust properties and distribution. EnVisS is mounted on a spinning spacecraft and the full sky (i.e. 360°x180°) is entirely mapped thanks to a very wide field of view (180°x45°) optical design selected for the EnVisS camera. The paper presents the design of the EnVisS optical head. A fisheye optical layout has been selected because of the required wide field of view (180°x45°). This kind of layout has recently found several applications in Earth remote sensing (3MI instrument on MetOp SG) and in space exploration (SMEI instrument on Coriolis, MARCI on Mars reconnaissance orbiter). The EnVisS optical head provides a high resolved image to be coupled with a COTS detector featuring 2kx2k pixels with pitch 5.5”m. Chromatic aberration is corrected in the waveband 550-800nm, while the distortion has been controlled over the whole field of view to remain below 8% with respect to an FΞ mapping law. Since the camera will be switched on 24 hours before the comet closest encounter, the operative temperature will change during the approaching phase and crossing of the comet’s coma. In the paper, we discuss the solution adopted for reaching these challenging performances for a space-grade design, while at the same time respecting the demanding small allocated volume and mass for the optical and mechanical design. The view expressed herein can in no way be taken to reflect the official opinion of the European Space Agency

    Heat treatment procedure of the Aluminium 6061-T651 for the Ariel Telescope mirrors

    Get PDF
    The Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) is the M4 mission adopted by ESA’s ”Cosmic Vision” program. Its launch is scheduled for 2029. The purpose of the mission is the study of exoplanetary atmospheres on a target of ∌ 1000 exoplanets. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope. The light is directed towards a set of photometers and spectrometers with wavebands between 0.5 and 7.8 ”m and operating at cryogenic temperatures. The Ariel Space Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1· 0.7 m, followed by a hyperbolic secondary, a parabolic collimating tertiary and a flat-folding mirror directing the output beam parallel to the optical bench; all in bare aluminium. The choice of bare aluminium for the realization of the mirrors is dictated by several factors: maximizing the heat exchange, reducing the costs of materials and technological advancement. To date, an aluminium mirror the size of Ariel’s primary has never been made. The greatest challenge is finding a heat treatment procedure that stabilizes the aluminium, particularly the Al6061T651 Laminated alloy. This paper describes the study and testing of the heat treatment procedure developed on aluminium samples of different sizes (from 50mm to 150mm diameter), on 0.7m diameter mirror, and discusses future steps

    FEA testing the pre-flight Ariel primary mirror

    Get PDF
    Ariel (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is an ESA M class mission aimed at the study of exoplanets. The satellite will orbit in the lagrangian point L2 and will survey a sample of 1000 exoplanets simultaneously in visible and infrared wavelengths. The challenging scientific goal of Ariel implies unprecedented engineering efforts to satisfy the severe requirements coming from the science in terms of accuracy. The most important specification – an all-Aluminum telescope – requires very accurate design of the primary mirror (M1), a novel, off-set paraboloid honeycomb mirror with ribs, edge, and reflective surface. To validate such a mirror, some tests were carried out on a prototype – namely Pathfinder Telescope Mirror (PTM) – built specifically for this purpose. These tests, carried out at the Centre Spatial de LiĂšge in Belgium – revealed an unexpected deformation of the reflecting surface exceeding a peek-to-valley of 1”m. Consequently, the test had to be re-run, to identify systematic errors and correct the setting for future tests on the final prototype M1. To avoid the very expensive procedure of developing a new prototype and testing it both at room and cryogenic temperatures, it was decided to carry out some numerical simulations. These analyses allowed first to recognize and understand the reasoning behind the faults occurred during the testing phase, and later to apply the obtained knowledge to a new M1 design to set a defined guideline for future testing campaigns

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Long term stability of optical coatings in close solar environment

    No full text
    Close observations of the solar atmosphere and surface are required in order to understand the solar activity and its influence on Earth. This task will be performed from Solar Orbiter mission which will reach a very close distance from the Sun: the minimum perihelion distance will be only 0.28 AU. At these distances, the spacecraft and instruments are immersed in a very harsh environment characterized by high temperature, solar wind particles and ions. The stability of the optical coatings at these working conditions are a crucial point in an instrument design and a thorough investigation of the environment effects must be carried out for a secure validation. In this work we present the first experiment carried on in laboratory to establish the effect of solar wind low energy particles bombardment in some optical coatings

    Exploring EUV near absorption edge optical constants for enhanced and sensitive grazing incidence reflectivity

    No full text
    A characterization procedures to test multilayers in the EUV and soft X-Ray wavelengths are theoretically studied in this paper. The fact that most candidate elements have absorption edge energies in the EUV and soft X-Ray has demanded extensive studies on the optical constants and their possible impact on multilayer design and reflectivity. Thus, EUV and soft X-Ray multilayers are preliminary designed and tested for various parameters. Effects and impacts of interface roughness, interlayer thickness, optical constants fluctuations, different phases of interlayer compounds on the reflectivity of multilayers are investigated in this piece of work. Two theoretical models are used each contributing different properties of the multilayers. Near absorption edge and off-absorption edge wavelengths are compared and contrasted to investigate what optical constants near the resonance edges can render in the EUV and soft X-Ray regime. Almost in all simulations the near absorption edge reflectivity have shown superior sensitivity to fluctuations of various design parameters. In addition, possible engineering tips of near absorption edge optical constants are indicated
    • 

    corecore