207 research outputs found

    Web-Shaped Model for Head Pose Estimation: an Approach for Best Exemplar Selection

    Get PDF
    Head pose estimation is a sensitive topic in video surveillance/smart ambient scenarios since head rotations can hide/distort discriminative features of the face. Face recognition would often tackle the problem of video frames where subjects appear in poses making it quite impossible. In this respect, the selection of the frames with the best face orientation can allow triggering recognition only on these, therefore decreasing the possibility of errors. This paper proposes a novel approach to head pose estimation for smart cities and video surveillance scenarios, aiming at this goal. The method relies on a cascade of two models: the first one predicts the positions of 68 well-known face landmarks; the second one applies a web-shaped model over the detected landmarks, to associate each of them to a specific face sector. The method can work on detected faces at a reasonable distance and with a resolution that is supported by several present devices. Results of experiments executed over some classical pose estimation benchmarks, namely Point '04, Biwi, and AFLW datasets show good performance in terms of both pose estimation and computing time. Further results refer to noisy images that are typical of the addressed settings. Finally, examples demonstrate the selection of the best frames from videos captured in video surveillance conditions

    Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA

    Get PDF
    RNAi interference (RNAi) for insect pest control is often used to silence genes controlling vital functions, thus generating lethal phenotypes. Here, we propose a novel approach, based on the knockout of an immune gene by dsRNA-expressing bacteria as a strategy to enhance the impact of spray applications of the entomopathogen Bacillus thuringiensis ( Bt). The target gene, Sl 102, controls the encapsulation and nodulation responses in the noctuid moth Spodoptera littoralis (Lepidop- tera, Noctuidae). To deliver Sl 102 dsRNA, we have developed a bacterial expression system, using HT115 Escherichia coli. This allows a much cheaper production of dsRNA and its protection against degradation. Transformed bacteria (dsRNA- Bac) administered through artificial diet proved to be more effective than dsRNA synthesized in vitro, both in terms of gene silencing and immunosuppression. This is a likely consequence of reduced dsRNA environmental degradation and of its protected release in the harsh conditions of the gut. The combined oral administration with artificial diet of dsRNA-Bac and of a Bt-based biopesticide (Xentariâ„¢) resulted in a remarkable enhancement of Bt killing activity, both on 4th and 5th instar larvae of S. littoralis, either when the two components were simultaneously administered or when gene silencing was obtained before Bt exposure. These results pave the way toward the development of novel Bt spray formulations containing killed dsRNA-Bac, which synergize Bt toxins by suppressing the insect immune response. This strategy will preserve the long-term efficacy of Bt-based products and can, in principle, enhance the ecological services provided by insect natural antagonists

    Chapter 5 anni di monitoraggio, controllo e prevenzione della pesca illegale nel Parco Sommerso di Gaiola (Golfo di Napoli)

    Get PDF
    The Gaiola Underwater Park is a small Marine Protected Area located in Naples (Italy), funded in 2002 to preserve the biological and archaeological heritage. In fact, because of the metropolitan context in which it is integrated, the area is subject to constant anthropic pressure, which often results in illegal activities, especially in the fishing sector. In this work, the results of 5 years of monitoring and control of illegal fishing inside the MPA are presented. This research had an important impulse in 2015, thanks to the collected data and to the methodology developed within the Gaiola MedPAN Project. The experience acquired in these years resulted in the funding of the StAMM Project, a permanent station for the monitoring, control and prevention of environmental offences in the MPA

    Groundwater Autochthonous Microbial Communities as Tracers of Anthropogenic Pressure Impacts: Example from a Municipal Waste Treatment Plant (Latium, Italy)

    Get PDF
    The groundwater behavior at a municipal solid waste disposal dump, located in Central Italy, was studied using a multi-parameter monitoring over 1 year consisting of 4 seasonal samples. The hydrological and hydrogeological dynamics of water circulation, microbiological parameters (microbial abundance and cell viability of the autochthonous microbial community), dissolved organic carbon, and several contaminants were evaluated and related to the geological structures in both two and three dimensions and used for geostatistical analysis in order to obtain 3D maps. Close relationships between geological heterogeneity, water circulation, pollutant diffusion, dissolved organic carbon, and cell viability were revealed. The highest cell viability values were found with dissolved organic carbon (DOC) values ≤0.5 mg/L; above this value, DOC negatively affected the microbial community. The highest DOC values were detected in groundwater at some sampling points within the site indicating its probable origin from the waste disposal dump. Although legislation limits for the parameters measured were not exceeded (except for a contaminant in one piezometer), the 1-year multi-parameter monitoring approach made it possible to depict both the dynamics and the complexity of the groundwater flux and, with "non-legislative parameters" such as microbial cell viability and DOC, identify the points with the highest vulnerability and their origin. This approach is useful for identifying the most vulnerable sites in a groundwater body

    Understanding the strategies to overcome phosphorus-deficiency and aluminum toxicity by ryegrass endophytic and rhizosphere phosphobacteria

    Get PDF
    Phosphobacteria, secreting organic acids and phosphatases, usually favor plant performance in acidic soils by increasing phosphorus (P) availability and aluminum (Al) complexing. However, it is not well-known how P-deficiency and Al-toxicity affect the phosphobacteria physiology. Since P and Al problems often co-occur in acidic soils, we have therefore proposed the evaluation of the single and combined effects of P-deficiency and Al-toxicity on growth, organic acids secretion, malate dehydrogenase (mdh) gene expression, and phosphatase activity of five Al-tolerant phosphobacteria previously isolated from ryegrass. These phosphobacteria were identified as Klebsiella sp. RC3, Stenotrophomona sp. RC5, Klebsiella sp. RCJ4, Serratia sp. RCJ6, and Enterobacter sp. RJAL6. The strains were cultivated in mineral media modified to obtain (i) high P in absence of Al-toxicity, (ii) high P in presence of Al-toxicity, (iii) low P in absence of Al-toxicity, and (iv) low P in presence of Al-toxicity. High and low P were obtained by adding KH2PO4 at final concentration of 1.4 and 0.05 mM, respectively. To avoid Al precipitation, AlCl3 × 6H2O was previously complexed to citric acid (sole carbon source) in concentrations of 10 mM. The secreted organic acids were identified and quantified by HPLC, relative mdh gene expression was determined by qRT-PCR and phosphatase activity was colorimetrically determined using p-nitrophenyl phosphate as substrate. Our results revealed that although a higher secretion of all organic acids was achieved under P-deficiency, the patterns of organic acids secretion were variable and dependent on treatment and strain. The organic acid secretion is exacerbated when Al was added into media, particularly in the form of malic and citric acid. The mdh gene expression was significantly up-regulated by the strains RC3, RC5, and RCJ6 under P-deficiency and Al-toxicity. In general, Al-tolerant phosphobacteria under P deficiency increased both acid and alkaline phosphatase activity with respect to the control, which was deepened when Al was present. The knowledge of this bacterial behavior in vitro is important to understand and predict the behavior of phosphobacteria in vivo. This knowledge is essential to generate smart and efficient biofertilizers, based in Al-tolerant phosphobacteria which could be expansively used in acidic soil

    Condition of pteropod shells near a volcanic CO2 vent region

    Get PDF
    Natural gradients of pH in the ocean are useful analogues for studying the projected impacts of Ocean Acidification (OA) on marine ecosystems. Here we document the in situ impact of submarine CO2 volcanic emissions (CO2 vents) on live shelled-pteropods (planktonic gastropods) species Creseis conica in the Gulf of Naples (Tyrrhenian Sea, Mediterranean). Since the currents inside the Gulf will likely drive those pelagic calcifying organisms into and out of the CO2 vent zones, we assume that pteropods will be occasionally exposed to the vents during their life cycle. Shell degradation and biomass were investigated in the stations located within and nearby the CO2 vent emission in relation to the variability of sea water carbonate chemistry. A relative decrease in shell biomass (22%), increase in incidence of shell fractures (38%) and extent of dissolution were observed in Creseis conica collected in the Gulf of Naples compared to those from the Northern Tyrrhenian Sea (control stations). These results suggest that discontinuous but recurrent exposure to highly variable carbonate chemistry could consistently affect the characteristic of the pteropod shells
    • …
    corecore