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Abstract 14 

Natural gradients of pH in the ocean are useful analogues for studying the projected impacts 15 

of Ocean Acidification (OA) on marine ecosystems. Here we document the in situ impact of 16 

submarine CO2 volcanic emissions (CO2 vents) on live shelled-pteropods (planktonic 17 

gastropods) species Creseis conica in the Gulf of Naples (Tyrrhenian Sea, Mediterranean). 18 

Since the currents inside the Gulf will likely drive those pelagic calcifying organisms into and 19 

out of the CO2 vent zones, we assume that pteropods will be occasionally exposed to the 20 

vents during their life cycle. Shell degradation and biomass were investigated in the stations 21 

located within and nearby the CO2 vent emission in relation to the variability of sea water 22 

carbonate chemistry. A relative decrease in shell biomass (22%), increase in incidence of 23 

shell fractures (38%) and extent of dissolution were observed in Creseis conica  collected in 24 

the Gulf of Naples compared to those from the Northern Tyrrhenian Sea (control stations).  25 

These results suggest that discontinuous but recurrent exposure to highly variable carbonate 26 

chemistry could consistently affect the characteristic of the pteropod shells.  27 
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1. Introduction 31 

Marine ecosystems are increasingly influenced by decreasing seawater pH and carbonate 32 

chemistry changes resulting from oceanic absorption of anthropogenic CO2, a process now 33 

well known as Ocean Acidification (OA) (Feely et al., 2004). Calcifying organisms are 34 

particularly susceptible to OA because perturbations in the seawater carbonate system, 35 

including changes in H+ and CO2 (aq), can reduce their ability to synthesize and/or maintain 36 

calcium carbonate skeletons and shells. In efforts to understand the implications of these 37 

changes on marine organisms, shallow submarine volcanic CO2 vents have been identified as 38 

useful analogues for studying the prospective impacts of Ocean Acidification on marine 39 

ecosystems (Hall-Spenser et al., 2008) since the water surrounding the CO2 vent naturally 40 

lowers the pH of the water column (Williams et al., 1992).  41 

Identifying the natural response of marine organisms to OA is a difficult task in laboratory 42 

conditions since the behaviour of the organism is constrained and the feeding environment is 43 

poorly simulated (Howes et al., 2015). However, the combination of laboratory experiments 44 

with the assessment of naturally acidified environmental gradients (such as CO2 vent 45 

environments), can provide further insights into the threshold pH affecting the performance 46 

of vulnerable marine species (Basso et al., 2015). Volcanic CO2 vents have been widely used 47 

as a proxy for future OA conditions by numerous authors showing the negative response of 48 

the higher pCO2 conditions to which benthic organisms have commonly been exposed for 49 

their entire life span (i.e. Ricevuto et al., 2012; Milazzo et al, 2014; Langer et al., 2014).   50 

Marine volcanic CO2 vents are abundant in the Mediterranean Sea, especially around Italy 51 

(Dando et al., 1999). Recent studies in the Gulf of Naples (Tyrrhenian Sea, Italy), on the 52 

impact of CO2 vents on marine benthic organisms inhabiting shallow coastal waters, showed 53 
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a shift from benthic calcareous communities to communities lacking scleractinian coral (Hall-54 

Spenser et al., 2008).  Furthermore, settlement and colonization by mollusks and microfauna 55 

decreased at the acidified stations (Ricevuto et al., 2012; Milazzo et al., 2014). In the same 56 

region, the natural pH gradient negatively affected the growth and survival in bivalves Pinna 57 

nobilis (Ricevuto et al., 2012) while the patellogastropod limpet Patella caerulea was able to 58 

counteract the low pH induced shell corrosion by the addition of aragonitic shell layers 59 

(Langer et al., 2014).  60 

With specific reference to the hydrological features, the Gulf of Naples is characterised by 61 

the presence of two main water masses typical of the southern Tyrrhenian Sea: the Modified 62 

Atlantic Water (MAW) and the Levantine Intermediate Water (LIW) (Uttieri et al., 2011). 63 

Even if in the study area the water masses are essentially the same as for the southern 64 

Tyrrhenian Sea, the presence of CO2 submarine emissions alters the carbonate chemistry 65 

nature of the water masses. The presence of natural submarine gas emissions was suggested 66 

by (Sacchi et al., 2005). More recently (Passaro et al., 2014, 2016), detected and mapped the 67 

gas discharge (dominated by CO2) at the seafloor of the Gulf of Naples and suggested that the 68 

occurrence of CO2 vents in this area could be linked to the interaction between volcanic 69 

related seafloor morphologies and the main, North East striking faults present in the area, 70 

(i.e., Vesuvian fault). 71 

However, all the CO2 vent related studies have been mainly focused on the response of the 72 

coastal benthic ecosystem, while the impact of these natural pH gradients on the planktonic 73 

calcifying population has not been explored. Unlike sessile benthic organisms, pelagic 74 

species can move in and out of waters surrounding the CO2 vents and experience a 75 

pronounced variability of pCO2 conditions over time. This mobility makes it difficult to 76 

quantify the exposure of pelagic organisms to high pCO2 levels. However, a recent study on 77 
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corals found that repetitive exposure to high pCO2 conditions may cause greater responses 78 

within certain organisms than exposure to static OA (Roleda et al., 2015). 79 

Euthecosome pteropods (planktonic shelled gastropods) have been identified as indicator for 80 

OA (OSPAR/ICES advisor group, 2015); as their thin shells are made of aragonite, a 81 

metastable form of biogenic CaCO3 (Mucci, 1983), shelled pteropods are extremely sensitive 82 

to changes in marine carbonate chemistry. These organisms have been widely studied for OA 83 

effects, both in simulated OA conditions in the lab and in the field where high pCO2 levels 84 

already occur. Short-term lab experiments (up to a month), examining the impact of exposure 85 

to high pCO2, document pteropod shell dissolution, lowered shell calcification, altered 86 

metabolism, behavior, gene expression and decreased survivorship (i.e. Manno et al., 2007; 87 

Comeau et al., 2010; Lischka and Riebesell, 2012; Moya et al., 2016). In the field, changes in 88 

pteropod species community composition, geographical distribution and presence of shell 89 

dissolution have been observed as a result of co-variation of natural high CO2 and low 90 

dissolved oxygen across a frontal system in the Southern California Current (Bednaršek et al., 91 

2014; 2015) and within an upwelling region in the Scotia Sea (Bednaršek et al., 2012b). Maas 92 

et al. (2016) suggested that natural environmental exposure to low pH and oxygen influences 93 

pteropod metabolic sensitivity in the Oxygen Minimum Zone in the North Atlantic.   94 

Here we present our observations of pteropods collected around the CO2 vent  region in the 95 

Gulf of Naples (Tyrrhenian Sea). We aim to assess the condition of pteropod shells (in terms 96 

of biomass and dissolution) to episodic exposure to high pCO2 in the presence of volcanic 97 

CO2 vents. We focus on the species Creseis conica (C. conica) which are common and 98 

distributed in tropical and subtropical water masses worldwide.  99 

This study documents, for the first time, the impact of natural CO2 volcanic emissions on live 100 

pteropods extracted directly from the natural environment. In particular the present work adds 101 

new insight to the in situ response of pteropods C. conica to recurrent exposure to critical 102 
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carbonate chemistry environments. This study also highlights the importance of including 103 

CO2 vent regions within a long term monitoring program to investigate the potential ability of 104 

pteropods to persist in a high CO2 ocean. 105 

2. Methods 106 

 107 

2.1 Study region 108 
This study was performed within the framework of the Medias (Mediterranean International 109 

Acoustic Survey) project in the Tyrrhenian and Ligurian seas. All the samples and data were 110 

collected on August 2015 during an oceanographic cruise in the Tyrrhenian Sea on board of   111 

the R/V “G. Dallaporta”. A total of 8 stations were sampled in the Gulf of Naples 112 

characterized by on site (4 stations, group “B”) and nearby (4 stations, group “C”) presence 113 

of natural submarine volcanic CO2 emissions. Since currents inside the gulf will likely drive 114 

the pteropods in (B stations) and out (C stations) the CO2 vent zones, we assume that those 115 

organisms will be periodically exposed to the vents during their life. In addition, more 116 

stations (3 stations, group “F”) were sampled outside of the Gulf of Naples, in the northern 117 

Tyrrhenian Sea (Fig 1), where no CO2 vents have been identified, to provide a control suite of 118 

samples (Fig 1).  119 

Stations characterized by natural gas emissions were identified during a previous 120 

oceanographic survey in the same area (Passaro et al., 2014) by means of the Simrad EK60 121 

Scientific Echosounder. Such instrumentation is typically used for estimating biomass and 122 

distributions of small pelagic fish species in many areas of the Mediterranean Sea (Bonanno 123 

et al., 2014) but also readily identify plumes of bubbles derived from CO2 vents at the 124 

seafloor.  125 
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 126 

 127 

Fig 1 Sampling station positions in the Northern Tyrrhenian Sea and in the Gulf of 128 

Naples (Mediterranean Sea). Stations B1-B2-B3-B4 are characterized by the presence of 129 

natural submarine volcanic CO2 emissions. Each station depth is indicated. See Passaro et al., 130 

2014; 2016 for a detailed map of CO2 vents emission points. 131 

2.2 Hydrology and Carbonate Chemistry measurements    132 

Full depth hydrological casts were acquired across all the stations using an SBE 9/11 Plus 133 

CTD, with temperature, oxygen, conductivity and fluorometer sensors. The probes were 134 

calibrated before the cruise at Sea-Bird Electronics in Kempten, Germany. The collected 135 

downcast data were quality-checked and processed using the Seasoft-Win32 software. The 136 

overall accuracies are within 0.001°C for temperature, 0.001 sm−1 for conductivity, and 137 

0.015% of full scale for pressure. Raw fluorescence values were converted to Chl a biomass 138 

(µg*l -1) using the factory calibration. 139 
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Discrete Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) samples were 140 

collected at different depths of the water column using a carousel equipped with Niskin 141 

bottles and then poisoned with HgCl2 (2% saturated solution) to prevent biological alteration.  142 

Seawater TA and DIC were measured by potentiometer titration, employing the open-cell 143 

procedure. The precision for TA was ±2.0 mmol kg−1 and 4 mmol kg1 for DIC. Data accuracy 144 

was confirmed by regular analyses of Certified Reference Materials (Scripps Institution of 145 

Oceanography).  Carbonate saturation states of aragonite (Ωar) were indirectly calculated 146 

from TA and DIC data using the CO2SYS software (Lewis and Wallace, 1998), with 147 

carbonate dissociation constants by (Mehrbach et al., 1973) refitted by (Dickson et al., 1997) 148 

and sulfate dissociation constants by (Dickson et al., 1990). Note that for logistical reasons no 149 

chemistry samples, were collected at station F39. 150 

2.3 Pteropod collection and investigation     151 

On board, living pteropods were collected from near bottom depth (ranging between 65 m 152 

and 170 m) to the surface by a Bongo-40 zooplankton net (200 µm mesh size). Sampling took 153 

place over one time at each station during the day time. The volume of sea water sampled was 154 

measured by General Oceanics mechanical flow-meters attached to the ring net. Samples 155 

were stored for 3 weeks within buffered formalin solution and kept at 4°C. pH was measure 156 

in all the samples, at the beginning and the end of the storing period to ensure that the state of 157 

the shells were not affected by the preservation technique. After three weeks from the 158 

collection, pteropod species were identified and counted using a light microscope Olympus 159 

SZX16. Pteropod abundance within the water column was calculated as individuals per cubic 160 

meter (Ind*m-3).  161 

Investigation of shell morphology and shell biomass was determined only for the dominant 162 

pteropod species C. conica. Shell morphology was performed using a Scanning Electron 163 

Microscope (SEM). The number of individuals analysed for SEM ranged between 10 or 20 164 
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for each station (except for station B2 where we analysed only 5 organisms) depending on the 165 

availability of specimens. Only individuals with similar shell size (juveniles ranging between 166 

280 µm-320 µm) were selected to facilitate comparison between different groups assuming 167 

same life stage has similar susceptibility to high pCO2 level. Before SEM imaging, 168 

individuals were carefully washed with DI water to remove salt on the shell and then air-169 

dried for 24h. The shells outer organic layer (periostracum) was not removed. We 170 

acknowledge that the exclusion (Bednaršek et al. 2016) or inclusion (Peck et al., 2016b) of 171 

periostracum for evaluate shell dissolution is still in debate. However our rationale for not 172 

removing the periostracum prior to imaging shells follows previous studies (Peck et al., 2015) 173 

showing that the removal of the organic outer layer, which also has an intra-crystalline matrix 174 

(Marin et al., 1996), can expose crystals in a way which could be mis-interpreted as shell 175 

dissolution. 176 

Shell degradation was evaluated by applying a semi-quantitative index of dissolution 177 

(Gerhardt et al., 2001; Lischka et al., 2011; Manno et al., 2012). This Dissolution Index is 178 

represented by six preservation stages (from 0 = best preservation to 5 = highest degree of 179 

dissolution), determined by: shell surface lustre (whether lustrous or dull); shell damage 180 

(surface with shell corrosion and/or perforation of at least one layer of aragonite). For each 181 

station, we calculated the % of shell falling in four dissolution levels: no corrosion 182 

(transparency, preservation stage  0); low corrosion (opacity with small sign of dissolution, 183 

preservation stage 1-2); high corrosion (periostracum and the first aragonite prismatic are 184 

partially missing, preservation stage 3-4); damage (presence of perforation, preservation stage  185 

5).  186 

Shell surface was inspected for the presence or absence of fracture zone (i.e., resulting from 187 

in situ mechanical damage) and represented as % shells presenting fractures to the total 188 

shells. To discriminate between “natural fractures”  and fractures due to mechanical damage 189 
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from the net and collection processing, we only considered the “historical fractures” where it 190 

appears that the animal has built up shell material to weld the shell back together (Peck et al. 191 

2018).  192 

For the measurement of shell biomass (carbonate content expressed as µg CaCO3), 193 

individuals were heated to 550°C for 5 h to eliminate organic matter content and the ashes 194 

(representing the remains of the shells) weighed using a Toledo microbalance. The ash 195 

weight can be considered an indirect estimate of CaCO3 content. As for SEM investigation, to 196 

allow us to estimate shell biomass difference between groups,  we only used individuals with 197 

similar shell diameter (juveniles, 302µm ±11, for a total of 76 specimens) and presenting the 198 

best shell condition within each group (31, F; 30 C; 15, B specimens).  199 

2.4 Data analysis  200 
For each station, the average values of carbonate chemistry parameters (pH, TA, Ωar, DIC, 201 

pCO2) were computed together with total abundance, shell biomass, shell dissolution level, 202 

and percentage of fractured shells. Temperature, salinity, Chl a and oxygen values recorded at 203 

the same depth of carbonate chemistry measurements were extracted from CTD profiles to 204 

obtain the average hydrological conditions at each station. Obtained data matrix was then 205 

used in the statistical analysis. The pairwise correlation between all above-mentioned factors 206 

was computed by using Spearman correlation coefficient. PCA was used to investigate the 207 

presence of pattern of variables (that could be interpreted as “processes”) as well as to best 208 

explain the variation observed among stations. The differences among the identified groups  209 

of stations were assessed with parametric statistical tests (namely ANOVA and t-test 210 

according to the nubers of groups). If serious violations in the assumption required by 211 

parametric tests were identified, the non-parametric alternative were used (Kruskal-Wallis 212 

ANOVA and Wilcoxon rank sum test). 213 

Shannon diversity index was used to characterize the pteropods biodiversity in the stations.   214 

All statistical analysis were carried out in R statistical environment (R Core Team, 2018). 215 
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3. RESULTS  216 

3.1 Hydrology profiles  217 

 At all stations mean surface and bottom temperature ranged between 25.6 °C and 28.2 °C 218 

and between 14.45 °C and 14.67 °C respectively (Fig 2a). Surface salinity was strongly 219 

influenced by the river outflow with values ranging from 37.09 to 38.25. The salinity 220 

minimum due to the presence of the Modified Atlantic Water (MAW) was typically 221 

positioned between 30 and 45 m (Fig 2a). Oxygen concentration exhibited a similar profile at 222 

all stations except B2 (Fig 2a) where higher surface oxygen values were mainly influenced by 223 

the Sarno river outflow. Fluorescence values ranged between 0.01 and 1.58 µg*l -1.  The 224 

higher values were recorded in the Gulf of Naples and in particular in the B2, B3 and C23 225 

stations (Fig. 2a). Dataset of the hydrological parameters is available in Table 1 in S1_Table. 226 
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 227 

 228 

Fig 2 Vertical hydrological and carbonate chemistry profiles. a) Temperature, salinity, 229 

oxygen (mg*l-1), Chl a (µg*l-1) and b) pCO2 (µatm) and Ωar (aragonite saturation state) at  230 

the sampling stations (F control, C nearby vents and B vents station). 231 

3.2 Carbonate chemistry  232 

Significant differences were recorded among the three groups of stations for both Ωar 233 

(ANOVA, F(2,7)=101.4, p<0.001) and pCO2 (ANOVA, F(2,7)=240.7, p<0.05). In particular, 234 
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although seawater was not under-saturated with respect to the aragonite at any of the stations 235 

(i.e., Ωar>1 at all stations), Ωar and pCO2 values in the Gulf of Naples (stations B and C) were 236 

respectively significantly lower and higher than at control site (stations F).  Differences in 237 

carbonate chemistry were also evaluated by grouping the B and C stations (Gulf of Naples) 238 

and comparing such group with the stations outside the gulf (control). Obtained results 239 

showed that stations outside the gulf were significantly different from the B+C group 240 

(Ωar;t(7)=5.78; p<0.05 and pCO2; t(7)=4.7, p<0.05). 241 

Dataset of carbonate chemistry is available in Table 2 in S1_Table. 242 

3.3 Difference in pteropod abundance and “shell fitness” between 243 

stations  244 

Pteropod abundance was significantly different between the three groups of stations (K-W 245 

ANOVA, H (2)= 7.13, p<0.05). In particular, pteropod abundance was significantly lower at 246 

group C (40%) and B (82%) stations than the control stations, group F.  247 

Pteropod diversity was significantly different (Shannon diversity index, (K-W ANOVA, H 248 

(2)= 6.76, p<0.05) between the three groups of stations also. In particular, diversity was 249 

significantly higher at the control stations outside the Gulf of Naples (group F, 100% of 250 

identified species) than in the stations of the groups B and C. Dataset of pteropod relative 251 

abundance is available in Table 3 in S1_Table.  252 

The state of C. conica shell condition is presented in (Fig 3a). ANOVA test showed that the 253 

percentage of shells presenting no signs of corrosion, low corrosion and high corrosion were 254 

significant different among the considered groups (No Corr: F(2,8)=9284, p<0.05; Low Corr:  255 

K-w: H(2)=9.07, p<0.05; High Corr: F(2,8)=102.6, p<0.05). Pteropods collected from the 256 

CO2 vent stations (group B) presented a significantly higher degree of dissolution than 257 

pteropods collected from stations C and F. In particular all pteropods collected in group F had 258 
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a well preserved and transparent shells (stage 0). Conversely, within group B, 60% of shells 259 

showed stage 4 levels of dissolution. Shell dissolution (even if moderate) was also observed 260 

in the group C, with 70% of shells exhibiting opacity and dullness (stage 3). SEM pictures in 261 

the Fig 3b are representative of the different C. conica shell dissolution stages observed. We 262 

did not observe evidence of shell perforation (stage 5) in any specimens.  263 

Significant differences among the three groups were evidenced also in terms of incidence of 264 

shell fractures (F (2, 8)=51, p<0.001) and biomass. In particular, at stations within group B 265 

the highest incidence of shell fractures and the lowest biomass was recorded. Significant 266 

differences were also recorded between C and F stations, the latter presenting the lowest 267 

incidence of shell fractures and the highest biomass. Dataset of pteropod shell biomass, 268 

fractures and dissolution are available in Table 4, 5 and 6 in S1_Table. 269 

Comparing the B+C stations against the F group, the presence of significant differences  270 

between the Gulf of Naples (B+C) and the Control station (F) were confirmed (No Corr: 271 

t(7)=103.97, p<0.05; Low Corr: t(7)=9.26, p<0.05; High Corr: t(7)=6.32, p<0.05; incidence of 272 

shell fractures:  t(7)=7.8, p<0.05; biomass: t(7)=7.35, p<0.05;). 273 
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 274 

Fig 3 Difference in pteropod abundance and “shell fitness” between stations a) Shell 275 

dissolution level (%) of C. conica collected at the group B (vent stations), C and station F; b) 276 

SEM images showing different levels of dissolution for C. conica shells. The top image 277 

shows a detail of C. conica shell in perfect condition (stage 0, mainly found in the group F); 278 

in the middle C. conica shell lustreless with sign of dissolution (stage 2-3, mainly found in 279 

group C and B); on the botttom C. conica shell with high dissolution where the periostracum 280 

and the first aragonite prismatic are partially missing (stage 4, mainly found in the group B); 281 

c) shell biomass (grey histogram, µg CaCO3* shell-1) and shell presenting fractures (white 282 

histogram, %) of C. conica  283 
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3.4 Relationships with carbonate chemistry and hydrology 284 

The pairwise correlation analysis (Fig 4a) showed the presence of strong correlations between 285 

carbonate chemistry and some parameters related to the condition of pteropods (such as the 286 

lowest and the highest dissolution levels, the biomass and the percentage of shell fractures). 287 

In particular, the absence of dissolution was positively related to high Ωar values. Conversely, 288 

the highest level of corrosion was negatively related to Ωar. The abundance and the shell 289 

biomass were found positively correlated with Ωar while the opposite was true for the 290 

percentage of shell presenting fractures. No significant differences were found among the 291 

three groups of stations in terms of temperature, salinity and oxygen, evidencing the presence 292 

of comparable hydrological conditions..  293 

PCA analysis further confirm the relationships observed in correlation analysis, providing a 294 

more clear picture of the factors driving differences among the three groups of stations (Fig. 295 

4b,c). The first two PCA axis explained 82% of the total variance. In particular, the 1st PC 296 

axis was significantly (see Table 7 in S1_Table) related to Ωar, and pCO2, absence of 297 

corrosion (No Corr) and higher corrosion, as well as to abundance, percentage of shell with 298 

fractures and biomass. Such patterns evidenced that stations having lower values on the first 299 

PCA axis were characterized by higher abundance, biomass, Ωar and lower shell dissolution 300 

(No Corr.) as well as by lower pCO2, percentage of shell with fractures and lower proportion 301 

of pteropods shell  characterized by higher degree of corrosion. As the 1st axis accounts for 302 

62.76% of the total variance it is clear that most of the variability among stations is related to 303 

pteropods and carbonate chemistry parameters. In this context all the B stations were 304 

clustered on the right side of the 1st PC axis, while the F stations showed the lowest values 305 

with respect to such axis. C stations were mainly found in intermediate position along the 1st 306 

PC axis evidencing the presence of intermediate conditions between B and F stations in terms 307 

of the parameters related to the 1st PC. Regarding the 2nd PC axis, it was found strongly 308 

related only to the hydrological parameters. Also, as it accounts for a much lower proportion 309 
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of the total variance, the weak effect of hydrological condition in driving the differences 310 

among the stations was confirmed. Dispersion of stations along the 2nd PC axis is much lower 311 

than the one along the 1st PC, and the observed differences along the 2nd PC are mainly due to 312 

local factors, such as distance from the coast (leading to higher Chl a) or the presence of 313 

freshwaters input (it is the case of C23 and F37 stations).   314 

 315 

Fig. 4a: Pairwise Spearman correlation plot among the considered variables. Correlation 316 

values are reported in the lower triangular matrix. In the upper triangular matrix a graphical 317 

representation of correlation values is reported (higher the correlation, bigger the circle; blue 318 

and red colours indicate positive and negative correlations respectively). The "X" symbol is 319 

used to mark the non-significant (p>0.05) correlations.. Note: no corrosion=% shell 320 

presenting preservation stage 0; low corrosion=% shell presenting preservation stage 1-2; 321 

high corrosion = % shell presenting preservation stage 3-4;   DIC =TCO2. 322 
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 323 

Fig 4b: PCA of the considered variables. Visual representation of the correlation among 324 

environmental, chemistry, biological factors variables  and PCs (left panel)  and distribution 325 

of the stations along the 1th and 2nd PCs space (right panel). Note corr = corrosion; 326 

TCO2=DIC 327 

4. DISCUSSION  328 

4.1 Pteropod shell fitness around CO2 vents 329 

This study documents, for the first time, the impact of natural CO2 volcanic emissions on live 330 

pteropods extracted directly from the natural environment. We illustrated that the decrease of 331 

Ωar, associated with the presence of CO2 vents, can alter the chemical environment for 332 

planktonic calcifying organisms in the vicinity. In particular, in situ shell dissolution and 333 

change in shell biomass were the predominant features observed in the live pteropods 334 

collected in the Gulf of Naples (in the station located within and nearby the CO2 vent 335 

discharge) compare to pteropods collected in the control stations. Unfortunately, so far there 336 

are no studies on seasonal variability of the carbonate chemistry in this region, however, 337 

the pH difference between the CO2 vent stations and the controls is higher than the natural 338 

seasonal variability of the Liguria coastal site (Howes et al., 2015), located on the border 339 

with the Tyrrhenian Sea. 340 
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The difficulty in investigating pelagic organisms along a “natural gradient” is determining the 341 

residence-times of populations within the CO2 vent stations, so as to parameterise the 342 

duration of their exposure to the stressor. However, pteropods may perform diel and/or 343 

seasonal vertical migration, spending part of their time under low Ωar (nearby the CO2 vent 344 

source at the bottom) and part in the more saturated waters at the surface (Bednaršek et al., 345 

2012; Manno et al., 2016).  In particular, Creseidae (such as C. conica) seems to perform diel 346 

vertical migration (Be and Gilmer, 1977; Hsueh, 1995) with a vertical distribution >100 m 347 

(van der Spoel, 1967; Be and Gilmer, 1977). Consequently, despite we do not have 348 

information on the vertical distribution of pteropods at the time of collection, we can assume 349 

that the organisms collected at the CO2 vent stations (group B, emission depth ranging from 350 

89m to 145m) will have been daily exposed to pCO2 fluctuation.  351 

Another challenge is that pteropods are also not static spatially and will likely move around 352 

and outside the Gulf of Naples transported by currents. Two different water inflow and 353 

outflow regimes are present in the Gulf of Naples, with a tendency towards stagnation inside 354 

the basin during spring and summer and a more effective water renewal mechanism in fall 355 

and winter under NE winds (Cianelli et al., 2015). In particular, Mazzocchi et al. (2012) 356 

outlined that the only few species representative of the coastal area dominate the zooplankton 357 

assemblage in summer owing to coastal retention (Cianelli et al., 2015). Thus, given a growth 358 

rate of about 0.33 mm per month (Bednaršek et al., 2012; Well, 1976) and a mean diameter 359 

of pteropod shell investigated in this study of 302µm, it is likely that specimens were retained 360 

in the Gulf of Naples from the very beginning of their life cycle and within the same water 361 

mass condition.  As Bednaršek et al., 2012 and Well, 1976 reported similar values of shell 362 

growth rates on pteropods collected from very different regions (i.e. Scotia Sea and West 363 

India respectively), we assume that the used growth rate can be representative for pteropods 364 

collected in the present study.  365 
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Uttieri et al., 2011 using a model simulations of particle transport (in the summer period) 366 

demonstrate the presence of a scarce renewal of coastal waters, both over short (i.e., 48 h) 367 

and long (i.e., 1 month) periods. The authors found that the residence times was very high, 368 

with particles remaining in the deployment area on average for more than 15 days. This 369 

simulation confirms that pteropods will spend a relevant amount of time in the station of 370 

collection before to be moved back and foward around the Gulf. Thus, although we do not 371 

have information about the resident time of pteropods in the Gulf of Naples, we can assume 372 

that pteropods collected in August (this study) have likely been trapped in the Gulf and have 373 

experienced intermittent CO2 vent impact for months. The presence of impacted pteropod 374 

shell in the stations (group C) not directly located on the CO2 vent discharge, confirm the role 375 

of currents within the Gulf of Naples, driving the pelagic calcifiers inside and outside the CO2 376 

vent emissions. Conversely,  sessile benthic calcifiers (as for result of their sedentary 377 

behaviour) experience shell degradation only when directly located around the CO2 vents 378 

(i.e., Hall-Spenser et al., 2014, Basso et al., 2015; Milazzo et al. 2014). 379 

The variability nature of the CO2 vent system over the time is a key factor in the 380 

interpretation of the observed negative impact on pteropods shell and in part explains the high 381 

level of shell dissolution despite the presence of oversaturated seawater (Ωar>1). We are 382 

aware that our data are not representative of the carbonate chemistry condition over time and 383 

a detailed survey throughout the year will be an important next step. However,  Passaro et al. 384 

(2016) found that in the Gulf of Naples bubble plumes generated at the CO2 vent are 385 

highly variable: from a continuous, dense bubble-flux to short-lived phenomena. In 386 

particular, the authors found the pH values above a shallow CO2 vent emission (75 m 387 

depth) decrease from 8.4 (at 70 m depth) to 7.8 (at the bottom). Unfortunately, the authors 388 

did not provide Ωar values but the pH values at the bottom are lower than the pH we 389 

observed near the CO2 vent emissions and it could likely correspond to lower Ωar than the 390 
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values observed in our study.  Therefore, periodical exposition to critical low Ωar values may 391 

drive the dissolution state of pteropod shells. 392 

Overall, we suggest that pteropods around the CO2 vents in the Gulf of Naples, are 393 

negatively impacted when periodically exposed to high spatial and temporal variability in 394 

Ωar.  Evidence of impact on pteropod shell dissolution has already been reported in the field. 395 

Within an upwelling system, Bednaršek et al. (2014), observed higher levels of shell 396 

dissolution (up to preservation stage 5) than the present study. This can reflect either the 397 

higher magnitude as well as time of exposure of pteropods in this region compared to the 398 

Gulf of Naples. Further, the absence of additive environmental stressors in the Gulf of Naples 399 

such as variability in oxygen and nutrient concentration could also partially explain the lower 400 

impact on the shell compared to the upwelling system.  401 

In the future targeted research, focused on the investigation of vertical distribution and 402 

migration of pteropods in the CO2 vent regions, will be crucial to improve our understanding 403 

on the potential ability of these organisms to avoid water depths with critical carbonate 404 

saturation state. It will be important to use Lagrangian modelling studies (to track pteropods 405 

across temporal and spatial scales) since in addition to intensity and duration of exposure 406 

(Manno et al., 2012; 2016), the impact of CO2 vents on pteropods is likely to be also a 407 

function of the recovery time between the exposures itself. Lagrangian particle tracking 408 

models coupled with hydrodynamic models are particularly efficient tools to examine the role 409 

played by various physical processes and to study transport processes over an entire basin to 410 

simulate zooplankton dispersion and distribution at different scales (e.g. Speirs et al., 2006; 411 

Lett et al., 2007). 412 

4.2 Impact on the pteropod shell biomass  413 

 We found that shell biomass was significantly lower in pteropods living within the Gulf of 414 

Naples compared to those in the Northern Tyrrhenian Sea. Only individuals of the similar 415 
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length (juveniles, 302 µm ± 11) were used to measure shell biomass in order to compare the 416 

different groups. The decrease in shell biomass suggests that calcification was lower than 417 

dissolution and in turn the shell biomass decrease. This was more the case of the individuals 418 

presenting high level of shell dissolution (group B) where likely the dissolution exceed the 419 

calcification. However, shell biomass of individuals in the group C, which present manly 420 

shells with opacity and/or low level of dissolution was still significantly lower, suggesting 421 

that the lower shell biomass was a common features of pteropods in the Gulf of Naples 422 

(compared to the shell biomass values of the control stations outside the Gulf). We are aware 423 

that other environmental factors can play a role in pteropods shell growth (e.g. temperature 424 

and salinity) (Lalli and Gilmer, 1989), however differences in salinity and temperature 425 

between the stations during the summer were within the natural seasonal variability of the 426 

Tyrrhenian Sea and well within the pteropods’ tolerance window (Lalli and Gilmer, 1989). 427 

Further, incubation experiment of pteropods under a range of salinity (Manno et al., 2012) 428 

and temperature (Lischka and Riebsell, 2012) show that those parameters have to change 429 

quite considerably before a negative effect is detectable (i.e., shell growth, behaviour, 430 

survival). Similarly, the potential role of temperature on shell dissolution was excluded 431 

because previous works found that under manipulate water condition increasing in 432 

temperature not leads to dissolution on pteropods (Lischka et al. 2011, Gardner et al. 2018). 433 

Food availability may also play a critical role in determining the shell growth because food 434 

supply is required to support the metabolic processes facilitating bio-calcification as well as 435 

the resistance of calcifiers to adverse condition such as OA (Ramajo et al., 2016). Particulate 436 

food availability to pteropods, as inferred indirectly from average Chl a fluorescence in each 437 

station was not significantly different between the three groups of stations, suggesting 438 

pteropods were not limited by food availability in the region around the CO2 vents.  439 
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Evidence of change in shell morphology in response to change in carbonate chemistry 440 

associated with shallow-water CO2 vents has already been observed in benthic molluscs (i.e., 441 

Langer et al., 2014, Garilli et al., 2015). Garilli et al. (2015) show that benthic gastropod 442 

species (Cyclope neritea and Nassarius corniculus) adapted to acidified seawater (Ωar=0.68) 443 

were smaller than those found in normal pH conditions (8.1) while Langer et al., (2014) 444 

found that the patellogastropod limpet Patella caerulea counteracted the induced shell 445 

dissolution in the CO2 vent waters (Ωar=3.01) by enhanced production of internal aragonite 446 

shell layers. Incubation experiments on the Mediterranean pteropod, Creseis acicula, reported 447 

a 30% decrease in calcification with a decrease in Ωar from 3.3 to 2.0 (Comeau et al., 2012). 448 

Moya et al. (2016) show that pteropod Heliconoides inflatus exhibited a 50% decrease in 449 

gross calcification when exposed to waters of Ωar = 2 (compare to control condition Ωar = 450 

2.9).  451 

Our results provide in situ evidence that shifts away from an organisms optimum Ωar values 452 

can significantly affect calcification despite waters remaining oversaturated. In support our 453 

observation, pteropod shells collected within sediment traps became significantly lighter over 454 

recent decades as Ωar decreased (Robert et al., 2011). A decrease in the shell thickness of 455 

modern (2000+, Ωar=4.0) tropical pteropod D. longirostris compared to 1960s (Ωar=3.5) 456 

samples has been observed (Roger et al., 2012).  Further, Howes et al. (2017) compared the 457 

difference in shell thickness of pteropod samples (Cavolinia inflexa and Styliola subula) 458 

collected in the Tyrrhenian Sea with archived samples from 1910’s. The authors observed 459 

that shell thickness from modern pteropods (Ωar=3.4) was significantly less than from 460 

individuals collected on 1910’s (Ωar=3.88) (despite they state those decrease in shell 461 

thickness should be treated with caution). Comparison with the present study and Howes et 462 

al. (2017), both made in the Tyrrhenian Sea, highlights the relevance of using natural 463 

environmental gradients to forecast the impact of high pCO2 on marine organisms as spatial 464 
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change (natural variability of the carbonate chemistry, associated to CO2 vents) can be a 465 

substitute for time (100’s older vs. modern samples, Howes et al., 2017).  Further short time 466 

experimental studies (up 29 days), where pteropods were incubated at undersaturated  Ωar 467 

levels, found a decrease of calcium carbonate precipitation and  shell diameter, respectively 468 

up 28% (Comeau et al., 2010) and 12 % (Lischka et al., 2012) confirming the relevance of 469 

short episodic exposure in natural environments.  470 

We observe an inverse relationship between shell biomass and the incidence of shells  471 

presenting fractures, indicating that fractures are most commonly found in shells with low 472 

biomass i.e., thinner/low density shells. Assuming predation pressure is comparable across all 473 

sites, we consider that thin shells found at station B are more fragile and therefore more prone 474 

to fracture than the more robust, high biomass shells. Although the effectiveness of the 475 

periostracum for pteropods is a matter of debate (Peck et al., 2016b; Bednaršek et al. 2016).  476 

Peck et al. (2016a) indicated that the shells of healthy, living pteropods are only susceptible 477 

to dissolution of the shell where the periostracum has been breached and the aragonite 478 

beneath is exposed to undersaturated waters. The susceptibility of the thin, fragile shells of 479 

pteropods at the CO2 vent stations to fracturing increases the incidence of aragonite being 480 

exposed beneath the damaged periostracum. The consequence of increased incidence of 481 

mechanical damage to the shell and exposure to undersaturated waters is consistent with our 482 

observation of heightened incidence of shell dissolution.  483 

In this study, C. conica (as well as the total pteropod assemblage) in the Gulf of Naples were 484 

lower in abundance compared to those collected in the control stations (Northern Tyrrhenian 485 

Sea). Due to the highly patchy distribution of pteropod abundance and sampling collection 486 

being limited to one time, the impact of CO2 vents on pteropod survivorship can only be 487 

speculative and any interpretation have to be evaluated with extremely caution. However, it is 488 

likely that the observed increasing in shell degradation and decreasing in shell biomass could 489 
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contribute to increasing in pteropod mortality (because affecting shell buoyancy, defence 490 

against predator etc.). Bednaršek et al. (2014) also observed a relationship between shell 491 

dissolution and decrease in pteropod abundance within the upwelling system and suggested 492 

that increased dissolution combined with increased shell fragility could potentially induce 493 

pteropod population decline. 494 

Marine organisms  have the potential to adapt to changes in ocean pH and adaptation 495 

potential can be inferred from existing genetic diversity related to patterns of local adaptation 496 

across present gradients in environmental pH (Stilmann and Paganini, 2015). Even if not 497 

explored in this study, the decrease in shell biomass of pteropods as potential local adaptation 498 

to natural low saturation state of CaCO3, is an interesting matter for future investigation. At 499 

the high latitudes, for example, due to the natural lower saturation state of CaCO3, shell-500 

building materials are more difficult to extract from seawater and calcifying organisms 501 

present thinner shells than individuals living at medium and low latitudes (Grauss et al. 502 

1974). Understanding the persistence of populations of marine organisms in future altered 503 

environments requires first an understanding of extant phenotypic plasticity under realistic 504 

environmental conditions and the potential for adaptation (Silmann and Paganini 2015). CO2 505 

vent regions might help to improve our understanding to predict if pteropod populations 506 

possess adequate genetic variation to adapt to forecasted environmental change. Future long 507 

term monitoring of the in situ population dynamics as well as study on phenotypic plasticity 508 

and genetic variation across natural small scale gradients (such as CO2 vent) will be crucial to 509 

understanding the plasticity- adaptive-defence of this organism to persist in a more acidified 510 

ocean over short (< 10 year) to medium (10–100 year) temporal scales. 511 

 512 

Appendix A. Supplementary data 513 
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S1 Table Hydrology and carbonate chemistry variables and pteropod dataset of all the 514 

stations. 1) Temperature, salinity, oxygen and fluorescence; 2) pH, Ωar, Total Alkalinity 515 

(TA), Dissolved Inorganic ; 3) pteropods abundance and species contribution; 4) shell 516 

biomass and length ; 5) shell fractures; 6) shell dissolution; 7) Correlation statistics  517 
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Highlights  

1- in situ shell dissolution and change in shell biomass were the predominant features 

observed in the live pteropods collected within and nearby CO2 vent regions. 

2- Low pteropod biomass shells (collected nearby the CO2 vents) were more fragile and 

therefore more prone to fracture than the more robust, high biomass shells (collected in the 

control stations). 

3- In the Gulf of Naples, intermittent shifts away from optimum Ωar values can significantly 

affect pteropod calcification despite waters remaining oversaturated.  

 

 


