340 research outputs found
Relationship, through geologic time, of days per lunar month to growth increments in fossil and recent molluscan shells Semiannual status report, 14 Sep. 1967 - 14 Mar. 1968
Relationship of geologic time and days per lunar month to growth patterns in fossil and recent molluscan shell
The sizes of galaxy halos in galaxy cluster Abell 1689
The multiple images observed in galaxy cluster Abell 1689 provide strong
constraints not only on the mass distribution of the cluster but also on the
ensemble properties of the cluster galaxies. Using parametric strong lensing
models for the cluster, and by assuming well motivated scaling laws between the
truncation radius s and the velocity dispersion sigma of a cluster galaxy we
are able to derive sizes of the dark matter halos of cluster galaxies.
For the scaling law expected for galaxies in the cluster environment (s
propto sigma), we obtain s = 64^{+15}_{-14} (sigma / 220 km/s) kpc. For the
scaling law used for galaxies in the field with s propto sigma^2 we find s =
66^{+18}_{-16} (sigma / 220 km/s)^2 kpc. Compared to halos of field galaxies,
the cluster galaxy halos in Abell 1689 are strongly truncated.Comment: 12 pages, 4 figures. Accepted for publication in the Ap
The stellar mass function of galaxies to z ~ 5 in the Fors Deep and GOODS-S fields
We present a measurement of the evolution of the stellar mass function (MF)
of galaxies and the evolution of the total stellar mass density at 0<z<5. We
use deep multicolor data in the Fors Deep Field (FDF; I-selected reaching
I_AB=26.8) and the GOODS-S/CDFS region (K-selected reaching K_AB=25.4) to
estimate stellar masses based on fits to composite stellar population models
for 5557 and 3367 sources, respectively. The MF of objects from the GOODS-S
sample is very similar to that of the FDF. Near-IR selected surveys hence
detect the more massive objects of the same principal population as do
I-selected surveys. We find that the most massive galaxies harbor the oldest
stellar populations at all redshifts. At low z, our MF follows the local MF
very well, extending the local MF down to 10^8 Msun. The faint end slope is
consistent with the local value of alpha~1.1 at least up to z~1.5. Our MF also
agrees very well with the MUNICS and K20 results at z<2. The MF seems to evolve
in a regular way at least up to z~2 with the normalization decreasing by 50% to
z=1 and by 70% to z=2. Objects having M>10^10 Msun which are the likely
progenitors of todays L* galaxies are found in much smaller numbers above z=2.
However, we note that massive galaxies with M>10^11 Msun are present even to
the largest redshift we probe. Beyond z=2 the evolution of the mass function
becomes more rapid. We find that the total stellar mass density at z=1 is 50%
of the local value. At z=2, 25% of the local mass density is assembled, and at
z=3 and z=5 we find that at least 15% and 5% of the mass in stars is in place,
respectively. The number density of galaxies with M>10^11 Msun evolves very
similarly to the evolution at lower masses. It decreases by 0.4 dex to z=1, by
0.6 dex to z=2, and by 1 dex to z=4.Comment: Accepted for publication in ApJ
The star formation rate history in the FORS Deep and GOODS South Fields
We measure the star formation rate (SFR) as a function of redshift z up to z
\~4.5, based on B, I and (I+B) selected galaxy catalogues from the FORS Deep
Field (FDF) and the K-selected catalogue from the GOODS-South field. Distances
are computed from spectroscopically calibrated photometric redshifts accurate
to (Delta_z / (z_spec+1)) ~0.03 for the FDF and ~0.056 for the GOODS-South
field. The SFRs are derived from the luminosities at 1500 Angstroem. We find
that the total SFR estimates derived from B, I and I+B catalogues agree very
well (\lsim 0.1 dex) while the SFR from the K catalogue is lower by ~0.2 dex.
We show that the latter is solely due to the lower star-forming activity of
K-selected intermediate and low luminosity (L<L_*) galaxies. The SFR of bright
(L>L_*) galaxies is independent of the selection band, i.e. the same for B, I,
(I+B), and K-selected galaxy samples. At all redshifts, luminous galaxies
(L>L_*) contribute only ~1/3 to the total SFR. There is no evidence for
significant cosmic variance between the SFRs in the FDF and GOODs-South field,
~0.1 dex, consistent with theoretical expectations. The SFRs derived here are
in excellent agreement with previous measurements provided we assume the same
faint-end slope of the luminosity function as previous works (alpha ~ -1.6).
However, our deep FDF data indicate a shallower slope of alpha=-1.07, implying
a SFR lower by ~0.3 dex. We find the SFR to be roughly constant up to z ~4 and
then to decline slowly beyond, if dust extinctions are assumed to be constant
with redshift.Comment: 6 pages, 2 figures, Accepted for publication in ApJ
Data reduction and astrometry strategies for wide-field images: an application to the Capodimonte Deep Field
The Capodimonte Deep Field (OACDF) is a multi-colour imaging survey on two
0.5x0.5 square degree fields performed in the BVRI bands and in six medium-band
filters (700 - 900 nm) with the Wide Field Imager (WFI) at the ESO 2.2 m
telescope at La Silla, Chile. In this contribution the adopted strategies for
the OACDF data reduction are discussed. Preliminary scientific results of the
survey are also presented.Comment: 12 pages, 10 figures, to be presented at "Astronomical Telescopes &
Instrumentation", SPIE 2002; corrected authors lis
Linking the X-ray and infrared properties of star-forming galaxies at z < 1.5
We present the most complete study to date of the X-ray emission from star formation in high-redshift (median z = 0.7; z −3 in both hard and soft X-ray bands. From the sources which are star formation dominated, only a small fraction are individually X-ray detected and for the bulk of the sample we calculate average X-ray luminosities through stacking. We find an average soft X-ray to infrared ratio of log ?L SX /L IR ? = −4.3 and an average hard X-ray to infrared ratio of log?L HX /L IR ?=−3.8.WereportthattheX-ray/IRcorrelationisapproximatelylinearthrough the entire range of L IR and z probed and, although broadly consistent with the local (z < 0.1) one, it does display some discrepancies. We suggest that these discrepancies are unlikely to be physical, i.e. due to an intrinsic change in the X-ray properties of star-forming galaxies with cosmic time, as there is no significant evidence for evolution of the L X /L IR ratio with redshift. Instead, they are possibly due to selection effects and remaining AGN contamination.
We also examine whether dust obscuration in the galaxy plays a role in attenuating X-rays from star formation, by investigating changes in the L X /L IR ratio as a function of the average dust temperature. We conclude that X-rays do not suffer any measurable attenuation in the host galaxy
GOODS-: identification of the individual galaxies responsible for the 80-290m cosmic infrared background
We propose a new method of pushing to its faintest detection
limits using universal trends in the redshift evolution of the far infrared
over 24m colours in the well-sampled GOODS-North field. An extension to
other fields with less multi-wavelength information is presented. This method
is applied here to raise the contribution of individually detected
sources to the cosmic infrared background (CIRB) by a factor 5 close to its
peak at 250m and more than 3 in the 350m and 500m bands. We
produce realistic mock images of the deep PACS and SPIRE images of
the GOODS-North field from the GOODS- Key Program and use them to
quantify the confusion noise at the position of individual sources, i.e.,
estimate a "local confusion noise". Two methods are used to identify sources
with reliable photometric accuracy extracted using 24m prior positions.
The clean index (CI), previously defined but validated here with simulations,
which measures the presence of bright 24m neighbours and the photometric
accuracy index (PAI) directly extracted from the mock images. After
correction for completeness, thanks to our mock images, individually
detected sources make up as much as 54% and 60% of the CIRB in the PACS bands
down to 1.1 mJy at 100m and 2.2 mJy at 160m and 55, 33, and 13% of
the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250m, 350m,
and 500m, respectively. The latter depths improve the detection limits of
by factors of 5 at 250m, and 3 at 350m and 500m as
compared to the standard confusion limit. Interestingly, the dominant
contributors to the CIRB in all bands appear to be distant siblings
of the Milky Way (0.96 for 300m) with a stellar mass
of 910M.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and
Astrophysic
The main sequence of star-forming galaxies across cosmic times
By compiling a comprehensive census of literature studies, we investigate the evolution of the main sequence (MS) of star-forming galaxies (SFGs) in the widest range of redshift (0 < z < 6) and stellar mass (108.5–1011.5 M☉) ever probed. We convert all observations to a common calibration and find a remarkable consensus on the variation of the MS shape and normalization across cosmic time. The relation exhibits a curvature towards the high stellar masses at all redshifts. The best functional form is governed by two parameters: the evolution of the normalization and the turnover mass (M0(t)), which both evolve as a power law of the Universe age. The turn-over mass determines the MS shape. It marginally evolves with time, making the MS slightly steeper towards z ∼ 4–6. At stellar masses below M0(t), SFGs have a constant specific SFR (sSFR), while above M0(t) the sSFR is suppressed. We find that the MS is dominated by central galaxies. This allows to turn M0(t) into the corresponding host halo mass. This evolves as the halo mass threshold between cold and hot accretion regimes, as predicted by the theory of accretion, where the central galaxy is fed or starved of cold gas supply, respectively. We, thus, argue that the progressive MS bending as a function of the Universe age is caused by the lower availability of cold gas in haloes entering the hot accretion phase, in addition to black hole feedback. We also find qualitatively the same trend in the largest sample of star-forming galaxies provided by the IllustrisTNG simulation. Nevertheless, we still note large quantitative discrepancies with respect to observations, in particular at the high-mass end. These can not be easily ascribed to biases or systematics in the observed SFRs and the derived MS
CSL-1: a chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?
CSL-1 (Capodimonte--Sternberg--Lens Candidate, No.1) is an extragalactic
double source detected in the OAC-DF (Osservatorio Astronomico di Capodimonte -
Deep Field). It can be interpreted either as the chance alignment of two
identical galaxies at z=0.46 or as the first case of gravitational lensing by a
cosmic string. Extensive modeling shows in fact that cosmic strings are the
only type of lens which (at least at low angular resolution) can produce
undistorted double images of a background source. We propose an experimentum
crucis to disentangle between these two possible explanations. If the lensing
by a cosmic string should be confirmed, it would provide the first measurements
of energy scale of symmetry breaking and of the energy scale of Grand Unified
Theory (GUT).Comment: Accepted for publication in the Mon. Not. Royal Astron. Societ
- …