128 research outputs found
Isothiazole derivatives as antiviral agents
We recently described the synthesis and antiviral activity of the compounds 5-phenyl-3-(4-cyano-5-phenylisothiazol-3-yl) disulphanyl-4-isothiazole-carbonitrile and S-(4-cyano-5-phenylisothiazol-3-yl)- O-ethyl thiocarbonate, which were found to be effective against both HIV-1 (IIIB) and HIV-2 (ROD). We have now evaluated these compounds against both RNA and DNA viruses, obtaining high selectivity indexes for poliovirus 1 (SI: 223 and 828, respectively) and Echovirus 9 (SI: 334 and 200, respectively). In our previous studies, 3-methylthio-5-(4- OBn-phenyl)-4-isothiazolecarbo-nitrile was found to exhibit a broad spectrum of action against picornaviruses, we therefore selected this compound and S-(4-cyano-5-phenylisothiazol-3-yl)- O-ethyl thiocarbonate as the model for the synthesis of a new isothiazole derivative, S-[4-cyano-5-(4- OBn-phenyl)isothiazol-3-yl]- O-ethyl thiocarbonate. This compound was evaluated against picornaviruses, measles virus, HIV-1 (IIIB) and HIV-2 (ROD), and some DNA viruses (adenovirus type 2 and herpes simplex virus type 1). The compound was shown to be active against rhinoviruses 2, 39, 86 and 89, Coxsackie B1 and measles virus
Anti-HIV-1 activity of benzothiadiazine dioxide
Antiviral assays carried out on the potent benzothiadiazine dioxide (BTD) human cytomegalovirus (HCMV) inhibitors have led us to find marginal but selective anti-HIV-1 activity. Specific pharmacological studies, such as time of addition experiments and assays on specific viral strains with mutations on its reverse transcriptase, have indicated that BTD compounds act as nonnucleoside reverse transcriptase inhibitors. Theoretical calculations showed a butterfly conformation for the active derivatives that are compatible with their mechanism of action. Therefore, BTD derivatives can be considered as potential lead compounds for the treatment of opportunistic HCMV infections in immunocompromised individuals such as AIDS patients.Peer Reviewe
Design and synthesis of wm5 analogues as HIV-1 TAR RNA binders
The 6-aminoquinolone WM5, previously identified by us, is among the most selective small molecules known as TAR RNA binders to show anti-HIV activity. Methods: Starting from WM5, a series of analogues modified at N-1, C-6 or C-7 position was prepared by inserting guanidine or amidine groups as well as other protonable moieties intended to electrostatically bind the phosphate backbone of TAR. All the compounds were tested for their ability to inhibit HIV-1 replication in MT-4 cells and in parallel for their cytotoxicity. The active compounds were also evaluated for their ability to interfere with the formation of the Tat-TAR complex using a Fluorescence Quenching Assay (FQA). Results: Some of the synthesized compounds showed an anti-HIV-1 activity in the sub-micromolar range with the naphthyridone derivatives being the most potent. Three of the synthesized derivatives were able to interact with the Tat-TAR complex formation presenting Ki values improved as compared to the values obtained with WM5. Conclusion: The addition of a pyridine-based protonable side chain at the N-1 position of the quinolone/naphthyridone core imparted to the compounds the ability to interfere with Tat-TAR complex formation and HIV-1 replicatio
Structure-Based Design of Novel Thiazolone[3,2-a]pyrimidine Derivatives as Potent RNase H Inhibitors for HIV Therapy
Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 μM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors
Peptides Derived from HIV-1 Integrase that Bind Rev Stimulate Viral Genome Integration
The human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), catalyzes the integration of viral DNA into the host cell genome. IN catalyzes the first step of the integration process, namely the 3′-end processing in which IN removes a pGT dinucleotide from the 3′ end of each viral long terminal repeat (LTR). Following nuclear import of the viral preintegration complex, the host chromosomal DNA becomes accessible to the viral cDNA and the second step of the integration process, namely the strand-transfer step takes place. This ordered sequence of events, centered on integration, is mandatory for HIV replication. assay system, we show that INr-1 and INr-2 are able to abrogate the inhibitory effects exerted by Rev and Rev-derived peptides on integrase activity. Both INr-1 and INr-2 were found to be cell-permeable and nontoxic, allowing a study of their effect in HIV-1-infected cultured cells. Interestingly, both INr peptides stimulated virus infectivity as estimated by production of the viral P24 protein, as well as by determination of the appearance of newly formed virus particles. Furthermore, kinetics studies revealed that the cell-permeable INr peptides enhance the integration process, as was indeed confirmed by direct determination of viral DNA integration by real-time PCR.The results of the present study raise the possibility that in HIV-infected cells, the Rev protein may be involved in the integration of proviral DNA by controlling/regulating the activity of the integrase. Release from such inhibition leads to stimulation of IN activity and multiple viral DNA integration events
Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity
Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly interfacial inhibitors that show antiviral activity
Sulfated Polysaccharide, Curdlan Sulfate, Efficiently Prevents Entry/Fusion and Restricts Antibody-Dependent Enhancement of Dengue Virus Infection In Vitro: A Possible Candidate for Clinical Application
10.1371/journal.pntd.0002188PLoS Neglected Tropical Diseases74
Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years
Human immunodeficiency virus (HIV) is the primary infectious agent of acquired immunodeficiency syndrome (AIDS), and non-nucleoside reverse transcriptase inhibitors (NNRTIs) are the cornerstone of HIV treatment. In the last 20 years, our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs, including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), thio-dihydro-alkoxy-benzyl-oxopyrimidine (S-DABO), diaryltriazine (DATA), diarylpyrimidine (DAPY) analogues, and their hybrid derivatives. Application of integrated modern medicinal strategies, including structure-based drug design, fragment-based optimization, scaffold/fragment hopping, molecular/fragment hybridization, and bioisosterism, led to the development of several highly potent analogues for further evaluations. In this paper, we review the development of NNRTIs in the last two decades using the above optimization strategies, including their structure–activity relationships, molecular modeling, and their binding modes with HIV-1 reverse transcriptase (RT). Future directions and perspectives on the design and associated challenges are also discussed.Human immunodeficiency virus (HIV) is the primary infectious agent of acquired immunodeficiency syndrome (AIDS), and non-nucleoside reverse transcriptase inhibitors (NNRTIs) are the cornerstone of HIV treatment. In the last 20 years, our medicinal chemistry group has made great strides in developing several distinct novel NNRTIs, including 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT), thio-dihydro-alkoxy-benzyl-oxopyrimidine (S-DABO), diaryltriazine (DATA), diarylpyrimidine (DAPY) analogues, and their hybrid derivatives. Application of integrated modern medicinal strategies, including structure-based drug design, fragment-based optimization, scaffold/fragment hopping, molecular/fragment hybridization, and bioisosterism, led to the development of several highly potent analogues for further evaluations. In this paper, we review the development of NNRTIs in the last two decades using the above optimization strategies, including their structure–activity relationships, molecular modeling, and their binding modes with HIV-1 reverse transcriptase (RT). Future directions and perspectives on the design and associated challenges are also discussed.status: publishe
Halogenated sesquiterpenes from the red alga Laurencia obtusa
Five sesquiterpenes along with three known ones, were isolated from the organic extract of the red alga Laurencia obtusa, collected at Milos island in the Aegean Sea, Greece. The structures of the new natural products, as well as their relative stereochemistry, were established by means of spectral data analyses, including 2D NMR experiments. The isolated metabolites were evaluated, but found inactive, against a wide variety of different RNA and DNA viruses. © 2002 Elsevier Science Ltd. All rights reserved
- …