143 research outputs found

    Computational studies on selective aromatic C-F bond activation at rhodium and ruthenium

    Get PDF
    Density functional theory (DFT) calculations have been carried out to study the selective C–F bond activation of fluoroaromatics at rhodium and ruthenium complexes. The C–F activation reaction of C6F5H with [Rh(SiR3)(PMe3)3] (R3 = Me2Ph, Ph3) to give [Rh(4-C6F4H)(PMe3)3] and FSiR3, has been studied computationally. Using a model system, [Rh(SiMe3)(PMe3)3], calculations show that the lowest energy process occurs via initial phosphine dissociation and subsequent C–F oxidative addition to give trans-[Rh(4-C6F4H)(F)(SiMe3)(PMe3)2], with computed free energies of activation (∆G‡) of +13.2 kcal/mol and +12.4 kcal/mol, respectively. Reductive elimination and phosphine association to give the final products [Rh(4-C6F4H)(PMe3)3] and FSiMe3 are found to be facile. In addition, calculations show that C–F activation at trans- [Rh(SiMe3)(PMe3)2] is more accessible kinetically and thermodynamically than C–H activation (∆∆G‡ = 2.9 kcal/mol, ∆∆G = 51.3 kcal/mol). DFT calculations have been used to model the reaction of C5NF5 at the 2-position with [Rh(X)(PEt3)3] (X = Si(OEt)3, Bpin, where Bpin = pinacolate = –OCMe2CMe2O–). C–F activation at the computational models [Rh(X)(PMe3)3] (X = Si(OMe)3 and Bpin) shows that the lowest pathways proceed via novel silyl- and boryl-assisted C–F activation in which short RhN contacts are computed in the transition states. These occur via modest barriers (∆G‡ = +26.1 kcal/mol and +20.1 kcal/mol, respectively, relative to the two separated reactants) and also account for the experimental selectivity. The hydrodefluorination (HDF) reaction of C6F5H at [Ru(H)2(CO)(NHC)(PR3)2] (NHC = SIMes, SIPr, IMes, IPr; R = Ph) to give 1,2,3,4-C6F4H2, has been investigated. Calculations on small (NHC = IMe, R = H) and full systems (NHC = IMes, R = Ph) have allowed a novel class of reaction mechanism to be defined involving a nucleophilic attack of one hydride ligand at C6F5H. The most accessible pathway has a computed transition state energy of +20.1 kcal/mol in THF (PCM, approach). In addition, calculations reveal that the use of a more sterically encumbered full model system is essential to explain the unusual ortho-regioselectivity observed experimentally

    Computational study of the hydrodefluorination of fluoroarenes at [Ru(NHC)(PR<sub>3</sub>)<sub style="vertical-align: sub;">2</sub>(CO)(H)<sub style="vertical-align: sub;">2</sub>]: predicted scope and regioselectivities

    Get PDF
    Density functional theory calculations have been employed to investigate the scope and selectivity of the hydrodefluorination (HDF) of fluoroarenes, C6F6-nHn (n = 0-5), at catalysts of the type [Ru(NHC)(PR3)(2)(CO)(H)(2)]. Based on our previous study (Angew. Chem., Int. Ed., 2011, 50, 2783) two mechanisms featuring the nucleophilic attack of a hydride ligand at a fluoroarene substrate were considered: (i) a concerted process with Ru-H/C-F exchange occurring in one step; and (ii) a stepwise pathway in which the rate-determining transition state involves formation of HF and a Ru-sigma-fluoroaryl complex. The nature of the metal coordination environment and, in particular, the NHC ligand was found to play an important role in both promoting the HDF reaction and determining the regioselectivity of this process. Thus for the reaction of C6F5H, the full experimental system (NHC = IMes, R = Ph) promotes HDF through (i) more facile initial PR3/fluoroarene substitution and (ii) the ability of the NHC N-aryl substituents to stabilise the key C-F bond breaking transition state through F center dot center dot center dot HC interactions. This latter effect is maximised along the lower energy stepwise pathway when an ortho-H substituent is present and this accounts for the ortho-selectivity seen in the reaction of C6F5H to give 1,2,3,4-C6F4H2. Computed C-F bond dissociation energies (BDEs) for C6F6-nHn substrates show a general increase with larger n and are most sensitive to the number of ortho-F substituents present. However, HDF is always computed to remain significantly exothermic when a silane such as Me3SiH is included as terminal reductant. Computed barriers to HDF also generally increase with greater n, and for the concerted pathway a good correlation between C-F BDE and barrier height is seen. The two mechanisms were found to have complementary regioselectivities. For the concerted pathway the reaction is directed to sites with two ortho-F substituents, as these have the weakest C-F bonds. In contrast, reaction along the stepwise pathway is directed to sites with only one ortho-F substituent, due to difficulties in accommodating ortho-F substituents in the C-F bond cleavage transition state. Calculations predict that 1,2,3,5-C6F4H2 and 1,2,3,4-C6F4H2 are viable candidates for HDF at [Ru(IMes)(PPh3)(2)(CO)(H)(2)] and that this would proceed selectively to give 1,2,4-C6F3H3 and 1,2,3-C6F3H3, respectively.</p

    Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    Full text link
    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results show the high accuracy of the proposed error estimator

    Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method

    Full text link
    [EN] Goal oriented error estimation and adaptive procedures are essential for the accurate and efficient evaluation of finite element numerical simulations that involve complex domains. By locally improving the approximation quality, for example, by using the extended finite element method (XFEM), we can solve expensive problems which could result intractable otherwise. Here, we present an error estimation technique for enriched finite element approximations that is based on an equilibrated recovery technique, which considers the stress intensity factor as the quantity of interest. The locally equilibrated superconvergent patch recovery is used to obtain enhanced stress fields for the primal and dual problems defined to evaluate the error estimate.This work was supported by the EPSRC grant EP/G042705/1 "Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method". Stephane Bordas also thanks partial funding for his time provided by the European Research Council Starting Independent Research Grant (ERC Stg Grant Agreement No. 279578) "RealTCut Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery". This work has been carried out within the framework of the research project DPI2010-20542 of the Ministerio de Ciencia e Innovacion (Spain). The financial support of the FPU program (AP2008-01086), the funding from Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged.GonzĂĄlez Estrada, OA.; RĂłdenas, J.; Bordas, S.; Nadal, E.; Kerfriden, P.; Fuenmayor FernĂĄndez, FJ. (2015). Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method. Computers and Structures. 152:1-10. https://doi.org/10.1016/j.compstruc.2015.01.015S11015

    Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

    Full text link
    [EN] An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a Âżsmooth + singularÂż decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.Stephane Bordas would like to thank the partial financial support of the Royal Academy of Engineering and of the Leverhulme Trust for his Senior Research Fellowship Towards the next generation surgical simulators as well as the financial support for Octavio A. Gonzalez-Estrada and Stephane Bordas from the UK Engineering Physical Science Research Council (EPSRC) under grant EP/G042705/1 Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method. Stephane Bordas also thanks partial financial support of the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) and the FP7 Initial Training Network Funding under grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology, INSIST". This work has been carried out within the framework of the research project DPI2010-20542 of the Ministerio de Ciencia e Innovacion (Spain). The financial support from Universitat Politecnica de Valencia, PROMETEO/2012/023 and Generalitat Valenciana are also acknowledged.GonzĂĄlez Estrada, OA.; Natarajan, S.; J.J. RĂłdenas; Nguyen-Xuan, H.; Bordas, S. (2013). Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Computational Mechanics. 52(1):37-52. https://doi.org/10.1007/s00466-012-0795-6S3752521Liu GR, Dai KY, Nguyen TT (2006) A smoothed finite element method for mechanics problems. Comput Mech 39(6): 859–877. doi: 10.1007/s00466-006-0075-4Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71(8): 902–930Nguyen-Xuan H, Bordas SPA, Nguyen-Dang H (2008) Smooth finite element methods: convergence, accuracy and properties. Int J Numer Methods Eng 74(2): 175–208. doi: 10.1002/nmeBordas SPA, Natarajan S (2010) On the approximation in the smoothed finite element method (SFEM). Int J Numer Methods Eng 81(5): 660–670. doi: 10.1002/nmeZhang HH, Liu SJ, Li LX (2008) On the smoothed finite element method. Int J Numer Methods Eng 76(8): 1285–1295. doi: 10.1002/nme.2460Nguyen-Thoi T, Liu G, Lam K, Zhang G. (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353Liu G, Nguyen-Thoi T, Lam K (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Lam K (2009) A node based smoothed finite element method (NS-FEM) for upper bound solution to solid mechanics problems. Comput Struct 87: 14–26Liu G. Smoothed Finite Element Methods. CRC Press, 2010Liu G, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on the smoothed FEM (SFEM) models: Properties, accuracy and convergence rates. Int J Numer Methods Biomed Eng 84: 1222–1256Nguyen T, Liu G, Dai K, Lam K (2007) smoothed finite element method. Tsinghua Sci Technol 12: 497–508Hung NX, Bordas S, Hung N (2009) Addressing volumetric locking and instabilities by selective integration in smoothed finite element. Commun Numer Methods Eng 25: 19–34Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197: 1184–1203Nguyen NT, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198: 165–177Bordas SPA, Rabczuk T, Hung NX, Nguyen VP, Natarajan S, Bog T, Ăłuan DM, Hiep NV (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23–24): 1419–1443. doi: 10.1016/j.compstruc.2008.07.006Bordas SP, Natarajan S, Kerfriden P, Augarde CE, Mahapatra DR, Rabczuk T, Pont SD (2011) On the performance of strain smoothing for Ăłuadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). Int J Numer Methods Biomed Eng 86: 637–666Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Dai K, Lam K (2009) On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM). Int J Numer Methods Eng 77: 1863–1869. doi: 10.1002/nme.2587Strouboulis T, Zhang L, Wang D, BabuĆĄka I. (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399Xiao ĂłZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least sĂłuares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138RĂłdenas JJ, GonzĂĄlez-Estrada OA, TarancĂłn JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular + smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi: 10.1002/nme.2313Panetier J, LadevĂšze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700Barros FB, Proenca SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Methods Eng 60(14):2373–2398. doi: 10.1002/nme.1048Nguyen-Thoi T, Liu G, Nguyen-Xuan H, Nguyen-Tran C (2011) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Int J Numer Methods Biomed Eng 27(2): 198–218. doi: 10.1002/cnmGonzĂĄlez-Estrada OA, RĂłdenas JJ, Bordas SPA, Duflot M, Kerfriden P, Giner E (2012) On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng Comput 29(8)Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2): 337–357RĂłdenas JJ, GonzĂĄlez-Estrada OA, DĂ­ez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534SzabĂł BA, BabuĆĄka I (1991) Finite element analysis. Wiley, New YorkBarber JR. (2010) Elasticity. Series: solid mechanics and its application, 3rd edn. Springer, DordrechtChen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerki mesh-free methods. Int J Numer Methods Eng 50: 435–466Yoo J, Moran B, Chen J (2004) Stabilized conforming nodal integration in the natural element method. Int J Numer Methods Eng 60: 861–890Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7): 1331–1364Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7): 1365–1382Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and eĂłuilibrium. Int J Numer Methods Eng 36(16): 2703–2724. doi: 10.1002/nme.1620361603Blacker T, Belytschko T (1994) Superconvergent patch recovery with eĂłuilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536Stein E, Ramm E, Rannacher R (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, ChichesterDuflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76: 1123–1138. doi: 10.1002/nmeBordas SPA, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11): 961–971RĂłdenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint eĂłuations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi: 10.1002/nme.1903DĂ­ez P, RĂłdenas JJ, Zienkiewicz OC (2007) EĂłuilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi: 10.1002/nmeYau J, Wang S, Corten H (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2): 335–341RĂłdenas JJ, GonzĂĄlez-Estrada OA, Fuenmayor FJ, Chinesta F (2010) Upper bounds of the error in X-FEM based on a moving least sĂłuares (MLS) recovery technique. In: Khalili N, Valliappan S, Li Ăł, Russell A (eds) 9th World congress on computational mechanics (WCCM9). 4th Asian Pacific Congress on computational methods (APCOM2010). Centre for Infrastructure Engineering and SafetyRĂłdenas JJ, GonzĂĄlez-Estrada OA, DĂ­ez P, Fuenmayor FJ (2007) Upper bounds of the error in the extended finite element method by using an eĂłuilibrated-stress patch recovery technique. In: International conference on adaptive modeling and simulation (ADMOS 2007). International Center for Numerical Methods in Engineering (CIMNE), pp 210–213Menk A, Bordas S (2010) Numerically determined enrichment function for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. Int J Numer Methods Eng 83: 805–828Menk A, Bordas S (2011) Crack growth calculations in solder joints based on microstructural phenomena with X-FEM. Comput Mater Sci 3: 1145–1156RĂłdenas JJ (2001) Error de discretizaciĂłn en el cĂĄlculo de sensibilidades mediante el mĂ©todo de los elementos finitos. PhD Thesis, Universidad PolitĂ©cnica de ValenciaAinsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chicheste

    Étude des mĂ©canismes de migration du cĂ©sium dans le dioxyde d'uranium stoechiomĂ©trique et sur-stoechiomĂ©trique : influence du molybdĂšne

    No full text
    In the nuclear fuel UO2, which is widely used in Pressurized Water Reactor (PWR), Cs is a volatile element and is one of the most abundant fission product (FP). Furthermore, 137Cs is known to be highly radiotoxic. During a hypothetical accident, release of Cs would be particularly problematic for the environment. Hence, study of this element is of major concern for nuclear safety. To assess this issue, the French nuclear safety institute (IRSN) develops codes to predict FP release from nuclear fuel in normal and accidental conditions. This code requires fundamental data on FP behavior such as diffusion coefficient of these elements in UO2 as a function of temperature and atmosphere conditions (leading to UO2+x formation in oxidative conditions). The aim of this PhD, supported by the IRSN, is to study Cs migration in stoichiometric and hyper-stoichiometric uranium dioxide with and without the presence of Mo, in normal and accidental conditions of a PWR. This latter element is also an abundant FP, which is important to consider because it acts as an oxygen buffer in the fuel and may interact chemically with Cs. Such interactions may affect Cs behavior, hence its release from the fuel. Therefore, Cs-Mo interactions are considered in our study. The experimental procedure consists in simulating the Cs and/or Mo presence in UO2 and UO2+x pellets by ion implantation of stable isotopes 133Cs and/or 95Mo. Then, high temperature annealing (950 °C - 1600 °C) under controlled atmosphere or electronic excitations induced by irradiation coupled with temperature are performed to induce Cs and Mo migration. Secondary Ion Mass Spectrometry (SIMS) is used to follow the concentration profile evolution of these elements, allowing extracting effective diffusion coefficients of Cs in UO2 and UO2+x as a function of irradiation or thermal treatment. Microstructure characterizations were made by Raman spectroscopy and transmission electron microscopy (TEM). We show that Cs is mobile in UO2 under reducing atmosphere, even though some of the Cs is trapped in Cs-bubbles located near the surface. We evidence that Mo presence prevents Cs to be mobile. The same tendency is observed in UO2+x under oxidizing atmosphere. Nevertheless, Cs immobilization mechanisms in presence of Mo vary upon redox conditions used during annealing. In reducing conditions, TEM experiments showed formation of Cs bubbles associated with Mo metallic precipitates in co-implanted samples. In oxidative conditions, absence of Cs mobility could be explained by Mo oxidation leading to possible Cs-Mo chemical interactions. For the first time, semi-empirical potentials were used to perform molecular dynamic (MD) calculations on Cs and Mo diffusion in UO2 and UO2+x. These simulations also allowed characterizing oxygen diffusion mechanisms in these matrixes in presence of Cs and MoDans le combustible nuclĂ©aire UO2, utilisĂ© dans les rĂ©acteurs Ă  eau pressurisĂ©e (REP), le Cs, Ă©lĂ©ment volatil compte parmi les produits de fission (PF) les plus abondamment produits. De plus, l’isotope 137Cs est connu pour ĂȘtre particuliĂšrement radiotoxique. En cas d’accident, le relĂąchement de cet isotope est donc problĂ©matique et son Ă©tude est cruciale pour la sĂ»retĂ© nuclĂ©aire. En France, l’IRSN (Institut de Radioprotection et de suretĂ© nuclĂ©aire) dĂ©veloppe des codes de prĂ©dictions du relĂąchement des PF depuis le combustible, tels que MFPR (Module for Fission Product Release). Ces codes nĂ©cessitent d’ĂȘtre alimentĂ©s par des donnĂ©es fondamentales sur le comportement des PF. Ainsi, la connaissance des coefficients de diffusion de ces Ă©lĂ©ments dans la matrice combustible en fonction de la tempĂ©rature et de l’atmosphĂšre (pouvant oxyder le combustible en UO2+x) est primordiale. Dans ce contexte, l’objectif de cette thĂšse, menĂ©e en collaboration avec l’IRSN, est d’étudier la migration du Cs dans le dioxyde d’uranium stƓchiomĂ©trique et sur-stƓchiomĂ©trique, en conditions reprĂ©sentatives d’un fonctionnement normal et accidentel d’un REP, avec et sans la prĂ©sence de Mo. Ce dernier est un PF abondamment produit qui agit comme tampon d’oxydation du combustible et est capable d’avoir des interactions chimiques avec le cĂ©sium. De telles interactions pourraient affecter le comportement du Cs, et donc son relĂąchement depuis le combustible. Il a donc Ă©tĂ© nĂ©cessaire d’envisager les Ă©ventuelles interactions entre le Cs et le Mo dans le cadre de notre Ă©tude. La dĂ©marche expĂ©rimentale a consistĂ© Ă  simuler la prĂ©sence de Cs et/ou Mo dans des pastilles d’UO2 ou d’UO2+x. par implantations ioniques des isotopes stables 133Cs et/ou 95Mo. Des recuits Ă  haute tempĂ©rature (950-1600°C) sous atmosphĂšre contrĂŽlĂ©e ou des irradiations en rĂ©gime Ă©lectronique couplĂ©es en tempĂ©rature ont ensuite Ă©tĂ© rĂ©alisĂ©s, permettant d’induire la migration du Cs et du Mo. La spectromĂ©trie de masse Ă  ionisation secondaire (SIMS) a Ă©tĂ© utilisĂ©e pour suivre l’évolution des profils de concentration des Ă©lĂ©ments implantĂ©s, permettant d’extraire les coefficients de diffusion apparents du Cs dans UO2 et UO2+x en fonction des diffĂ©rents traitements. Une Ă©tude complĂ©mentaire de la microstructure a Ă©tĂ© rĂ©alisĂ©e par spectroscopie Raman et microscopie Ă©lectronique en transmission (MET). Le Cs est trĂšs mobile dans UO2 sous atmosphĂšre rĂ©ductrice mĂȘme si une partie et piĂ©gĂ©e sous forme de bulles Ă  faible profondeur. Nous avons mis en Ă©vidence que la prĂ©sence de Mo diminuait fortement cette mobilitĂ©. La mĂȘme tendance est observĂ©e dans UO2+x sous atmosphĂšre oxydante. NĂ©anmoins les mĂ©canismes d’immobilisation du Cs par le Mo diffĂšrent selon les conditions redox de recuit. En atmosphĂšre rĂ©ductrice, les expĂ©riences MET ont montrĂ© la formation de paires bulles de Cs-prĂ©cipitĂ©s mĂ©talliques de Mo dans les Ă©chantillons co-implantĂ©s. En atmosphĂšre oxydante, l’absence de mobilitĂ© du Cs pourrait ĂȘtre liĂ©e Ă  l’oxydation du Mo rendant possible des interactions chimiques Cs-Mo. Pour la premiĂšre fois, des potentiels semi-empiriques ont Ă©tĂ© utilisĂ©s pour rĂ©aliser des calculs de dynamique molĂ©culaire sur la diffusion du Cs et du Mo dans UO2 et UO2+x. Ces calculs nous ont aussi permis de caractĂ©riser les mĂ©canismes de diffusion de l’oxygĂšne dans ces matĂ©riaux en prĂ©sence de ces deux P

    Study of Cesium migration mechanisms in stoichiometric and hyper-stoichiometric uranium dioxide : influence of Molybdenum

    No full text
    Dans le combustible nuclĂ©aire UO2, utilisĂ© dans les rĂ©acteurs Ă  eau pressurisĂ©e (REP), le Cs, Ă©lĂ©ment volatil compte parmi les produits de fission (PF) les plus abondamment produits. De plus, l’isotope 137Cs est connu pour ĂȘtre particuliĂšrement radiotoxique. En cas d’accident, le relĂąchement de cet isotope est donc problĂ©matique et son Ă©tude est cruciale pour la sĂ»retĂ© nuclĂ©aire. En France, l’IRSN (Institut de Radioprotection et de suretĂ© nuclĂ©aire) dĂ©veloppe des codes de prĂ©dictions du relĂąchement des PF depuis le combustible, tels que MFPR (Module for Fission Product Release). Ces codes nĂ©cessitent d’ĂȘtre alimentĂ©s par des donnĂ©es fondamentales sur le comportement des PF. Ainsi, la connaissance des coefficients de diffusion de ces Ă©lĂ©ments dans la matrice combustible en fonction de la tempĂ©rature et de l’atmosphĂšre (pouvant oxyder le combustible en UO2+x) est primordiale. Dans ce contexte, l’objectif de cette thĂšse, menĂ©e en collaboration avec l’IRSN, est d’étudier la migration du Cs dans le dioxyde d’uranium stƓchiomĂ©trique et sur-stƓchiomĂ©trique, en conditions reprĂ©sentatives d’un fonctionnement normal et accidentel d’un REP, avec et sans la prĂ©sence de Mo. Ce dernier est un PF abondamment produit qui agit comme tampon d’oxydation du combustible et est capable d’avoir des interactions chimiques avec le cĂ©sium. De telles interactions pourraient affecter le comportement du Cs, et donc son relĂąchement depuis le combustible. Il a donc Ă©tĂ© nĂ©cessaire d’envisager les Ă©ventuelles interactions entre le Cs et le Mo dans le cadre de notre Ă©tude. La dĂ©marche expĂ©rimentale a consistĂ© Ă  simuler la prĂ©sence de Cs et/ou Mo dans des pastilles d’UO2 ou d’UO2+x. par implantations ioniques des isotopes stables 133Cs et/ou 95Mo. Des recuits Ă  haute tempĂ©rature (950-1600°C) sous atmosphĂšre contrĂŽlĂ©e ou des irradiations en rĂ©gime Ă©lectronique couplĂ©es en tempĂ©rature ont ensuite Ă©tĂ© rĂ©alisĂ©s, permettant d’induire la migration du Cs et du Mo. La spectromĂ©trie de masse Ă  ionisation secondaire (SIMS) a Ă©tĂ© utilisĂ©e pour suivre l’évolution des profils de concentration des Ă©lĂ©ments implantĂ©s, permettant d’extraire les coefficients de diffusion apparents du Cs dans UO2 et UO2+x en fonction des diffĂ©rents traitements. Une Ă©tude complĂ©mentaire de la microstructure a Ă©tĂ© rĂ©alisĂ©e par spectroscopie Raman et microscopie Ă©lectronique en transmission (MET). Le Cs est trĂšs mobile dans UO2 sous atmosphĂšre rĂ©ductrice mĂȘme si une partie et piĂ©gĂ©e sous forme de bulles Ă  faible profondeur. Nous avons mis en Ă©vidence que la prĂ©sence de Mo diminuait fortement cette mobilitĂ©. La mĂȘme tendance est observĂ©e dans UO2+x sous atmosphĂšre oxydante. NĂ©anmoins les mĂ©canismes d’immobilisation du Cs par le Mo diffĂšrent selon les conditions redox de recuit. En atmosphĂšre rĂ©ductrice, les expĂ©riences MET ont montrĂ© la formation de paires bulles de Cs-prĂ©cipitĂ©s mĂ©talliques de Mo dans les Ă©chantillons co-implantĂ©s. En atmosphĂšre oxydante, l’absence de mobilitĂ© du Cs pourrait ĂȘtre liĂ©e Ă  l’oxydation du Mo rendant possible des interactions chimiques Cs-Mo. Pour la premiĂšre fois, des potentiels semi-empiriques ont Ă©tĂ© utilisĂ©s pour rĂ©aliser des calculs de dynamique molĂ©culaire sur la diffusion du Cs et du Mo dans UO2 et UO2+x. Ces calculs nous ont aussi permis de caractĂ©riser les mĂ©canismes de diffusion de l’oxygĂšne dans ces matĂ©riaux en prĂ©sence de ces deux PFIn the nuclear fuel UO2, which is widely used in Pressurized Water Reactor (PWR), Cs is a volatile element and is one of the most abundant fission product (FP). Furthermore, 137Cs is known to be highly radiotoxic. During a hypothetical accident, release of Cs would be particularly problematic for the environment. Hence, study of this element is of major concern for nuclear safety. To assess this issue, the French nuclear safety institute (IRSN) develops codes to predict FP release from nuclear fuel in normal and accidental conditions. This code requires fundamental data on FP behavior such as diffusion coefficient of these elements in UO2 as a function of temperature and atmosphere conditions (leading to UO2+x formation in oxidative conditions). The aim of this PhD, supported by the IRSN, is to study Cs migration in stoichiometric and hyper-stoichiometric uranium dioxide with and without the presence of Mo, in normal and accidental conditions of a PWR. This latter element is also an abundant FP, which is important to consider because it acts as an oxygen buffer in the fuel and may interact chemically with Cs. Such interactions may affect Cs behavior, hence its release from the fuel. Therefore, Cs-Mo interactions are considered in our study. The experimental procedure consists in simulating the Cs and/or Mo presence in UO2 and UO2+x pellets by ion implantation of stable isotopes 133Cs and/or 95Mo. Then, high temperature annealing (950 °C - 1600 °C) under controlled atmosphere or electronic excitations induced by irradiation coupled with temperature are performed to induce Cs and Mo migration. Secondary Ion Mass Spectrometry (SIMS) is used to follow the concentration profile evolution of these elements, allowing extracting effective diffusion coefficients of Cs in UO2 and UO2+x as a function of irradiation or thermal treatment. Microstructure characterizations were made by Raman spectroscopy and transmission electron microscopy (TEM). We show that Cs is mobile in UO2 under reducing atmosphere, even though some of the Cs is trapped in Cs-bubbles located near the surface. We evidence that Mo presence prevents Cs to be mobile. The same tendency is observed in UO2+x under oxidizing atmosphere. Nevertheless, Cs immobilization mechanisms in presence of Mo vary upon redox conditions used during annealing. In reducing conditions, TEM experiments showed formation of Cs bubbles associated with Mo metallic precipitates in co-implanted samples. In oxidative conditions, absence of Cs mobility could be explained by Mo oxidation leading to possible Cs-Mo chemical interactions. For the first time, semi-empirical potentials were used to perform molecular dynamic (MD) calculations on Cs and Mo diffusion in UO2 and UO2+x. These simulations also allowed characterizing oxygen diffusion mechanisms in these matrixes in presence of Cs and M

    Vérification des facteurs d'intensité de contrainte calculés par XFEM

    No full text
    In the field of fracture mechanics, the analysis of a structure containing cracks involves the calculation of some quantities of interest like the stress intensity factors (SIF) or the energy release rate. It is necessary to assess the quality of these quantities when they are computed by a numerical scheme. These past decades, efficient tools were developed to calculate accurate bounds for linear outputs of interest computed by the finite element method (FEM). The most widespread technique involves the resolution of the well known adjoint problem. It derives from the global error estimators in energy norm. The technique developped at the LMT Cachan allows one to easily get sharp and strict bounds. The local error estimator for the stress intensity factors has already been succesfully tested for the standard FEM. Herein, we focus on the verification of the computed SIF with the extended finite element method introduced. We take into account the enrichment both by the asymptotic and by the discontinuous functions. The use of asymptotic fields and the exploitation of intrinsic properties of the error estimator allows us to get strict bounds in respect with the XFEM framework.La prĂ©vision de la tenue des structures fissurĂ©es nĂ©cessite le calcul du taux de restitution d'Ă©nergie ou des facteurs d'intensitĂ© de contrainte (FIC) en pointe de fissure. Ces quantitĂ©s sont gĂ©nĂ©ralement Ă©valuĂ©es aprĂšs une analyse Ă©lĂ©ments finis. Plus rĂ©cemment l'apparition de la XFEM a permis d'amĂ©liorer la description des champs en pointe fissure et de s'affranchir des remaillages successifs aprĂšs chaque pas de propagation. NĂ©anmoins, la solution ainsi calculĂ©e demeure une solution approchĂ©e de la solution du problĂšme de rĂ©fĂ©rence. Il est donc important de pouvoir Ă©valuer la pertinence de ces calculs. Ces travaux de thĂšse proposent une technique Ă  mĂȘme de fournir un encadrement conservatif des FIC Ă©valuĂ©s par une mĂ©thode Ă©lĂ©ments finis classique et par la XFEM. L'utilisation des techniques d'Ă©valuation d'erreur sur les quantitĂ©s d'intĂ©rĂȘt et de l'erreur en relation de comportement permet dans un premier temps de fournir des bornes de bonne qualitĂ© pour les FIC. On propose ensuite une mĂ©thode permettant d'Ă©valuer l'erreur globale commise lors d'une analyse XFEM. Elle fait intervenir l'erreur en relation de comportement et des techniques de construction de champs de contrainte adĂ©quates. On est alors en mesure de proposer un encadrement assez fin des FIC pour un coĂ»t numĂ©rique trĂšs raisonnable. L'estimation d'erreur peut finalement ĂȘtre envisagĂ©e comme un moyen de dĂ©terminer les quantitĂ©s d'intĂ©rĂȘt avec prĂ©cision
    • 

    corecore