
        

Citation for published version:
Schwartsburd, L, Mahon, MF, Poulten, RC, Warren, MR & Whittlesey, MK 2014, 'Mechanistic studies of the
rhodium NHC catalyzed hydrodefluorination of polyfluorotoluenes', Organometallics, vol. 33, no. 21, pp. 6165-
6170. https://doi.org/10.1021/om500827d

DOI:
10.1021/om500827d

Publication date:
2014

Document Version
Peer reviewed version

Link to publication

This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Organometallics, copyright © American Chemical Society after peer review and technical editing by the
publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/om500827d

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161913443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1021/om500827d
https://researchportal.bath.ac.uk/en/publications/mechanistic-studies-of-the-rhodium-nhc-catalyzed-hydrodefluorination-of-polyfluorotoluenes(28fb44ce-263b-4b28-97b2-da4e489f8baa).html


 1 

REVISED MANUSCRIPT 

3 Schemes 

 3 Figures 

1 Table 

 

 

 

Mechanistic Studies of the Rhodium NHC Catalyzed Hydrodefluorination of 

Polyfluorotoluenes 

 

Leonid Schwartsburd, Mary F. Mahon, Rebecca C. Poulten and Michael K. Whittlesey* 

 

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

Abstract 

The six-membered ring NHC complexes Rh(6-NHC)(PPh3)2H (6-NHC = 6-iPr, 1; 6-Et, 

2; 6-Me, 3) have been employed in the catalytic hydrodefluorination (HDF) of C6F5CF3 

and 2-C6F4HCF3. Stoichiometric studies showed that 1 reacted with C6F5CF3 at room 

temperature to afford cis- and trans-phsophine isomers of Rh(6-iPr)(PPh3)2F (4), which 

reform 1 upon heating with Et3SiH. Although up to three consecutive HDF steps prove 

possible with C6F5CF3, the ultimate effectiveness of the catalysts are limited by their 

propensity to undergo C-H activation of partially fluorinated toluenes to give, for 

example, Rh(6-iPr)(PPh3)2(C6F4CF3) (7), which was isolated and structurally 

characterized.  
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Introduction 

 The development of new routes for the synthesis of carbon-fluorine containing 

compounds is a topic of widespread interest because of the importance of such species in 

the pharmaceutical and agrochemical industries.1 Figure 1 gives some selected examples 

of pharmaceuticals, all based upon partially fluorinated aromatic rings, with well-defined 

substitution patterns. The synthetic challenge is therefore to make C-F containing arenes, 

in a simple way that is also highly regio- and chemo-selective.2  

 

Figure 1. Examples of partially fluorinated compounds of pharmaceutical value. 

 

One approach that is gaining in attention as a potential route for preparing 

partially fluorinated arenes is catalytic hydrodefluorination (HDF),3 which involves the 

substitution of a fluorine atom in a readily available perfluoroarene by a hydrogen atom, 

most commonly under the action of a d-block metal catalyst.4,5 However, before HDF can 

provide a route to the complicated partially fluorinated arenes, such as shown in Figure 1, 

there needs to be a much better mechanistic understanding of how to control the regio- 
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and chemo-selectivity of C-F activation, as well as the factors that govern catalyst 

activity and lifetime and pathways to catalyst decomposition.  

In 2009, we reported the catalytic HDF of C6F5H by the N-heterocyclic carbene 

complexes Ru(NHC)(PPh3)2(CO)H2 (NHC = IMes, IPr, SIMes, SIPr) in the presence of 

an alkylsilane.6 These reactions took place with a remarkably high and quite atypical 

ortho-regioselectivity. DFT calculations revealed that this resulted from a novel 

nucleophilic hydride attack mechanism, which has been discussed in detail elsewhere.7,8 

The NHC ligands played a crucial role in the catalysis, helping to lower the energy of a 

key C-F bond breaking transition state by helping to stabilize C-HF interactions. In 

contrast, the all-phosphine containing analogue, Ru(PPh3)3(CO)H2, proved total inactive 

for HDF. 

 In light of this enhancement at Ru brought about by the presence of an NHC, we 

became interested in looking for similar behaviour in Rh complexes, especially given that 

Rh-PR3 hydride complexes are well-known in both stoichiometric and catalytic C-F 

activation.9 Recent results from our laboratory have provided support for there being a 

difference in reactivity of Rh-NHC and Rh-PR3 complexes, at least in stoichiometric C-F 

bond activation. Thus, the six-membered ring NHC complexes Rh(6-NHC)(PPh3)2H (6-

NHC = 6-iPr, 1; 6-Et, 2; 6-Me, 3) activate hexafluopropene (F2C=CFCF3) to afford the 

corresponding fluoride complexes Rh(6-NHC)(PPh3)2F (6-NHC = 6-iPr, 4; 6-Et, 5; 6-Me, 

6),10 which is quite surprising since most reactions of sp2-hybridized C-F bonds with 

rhodium phosphine complexes give only Rh-fluoroaryl or Rh-fluoroalkenyl products.9t In 

the case of C6F6, 1 does form the fluoroaryl complex Rh(6-iPr)(PPh3)2(C6F5) (7), 

although alongside 4.11 
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 We now wish to report mechanistic studies on the HDF of perfluorotoluene 

(C6F5CF3) and polyfluorotoluenes of lower fluorine content, catalyzed by the Rh(6-

NHC)(PPh3)2H complexes 1-3. Perfluorotoluene proved to be an excellent benchmark 

substrate, not only because of the electron-withdrawing ability of the CF3 group, which 

facilitates the HDF reaction, but also because this group serves as a distinctive marker for 

HDF products in the 19F NMR spectral analysis. The study of the consecutive steps of 

perfluorotoluene HDF reveals the mechanism of the catalytic reaction. In addition, the 

influence of the 6-NHC substituents (iPr, Et, Me) on the efficiency of the catalytic HDF 

reaction is described. 

 

Results and Discussion 

C-F Bond Activation of C6F5CF3 by 1. Addition of 5 equiv of C6F5CF3 to a 

benzene solution of Rh(6-iPr)(PPh3)2H (1)12 resulted in the slow (40 h) room temperature 

C-F activation of the substrate to generate the Rh-F complex 4 (Scheme 1), as a 4:1 

mixture of the cis- and trans-phosphine isomers 4a and 4b, respectively. The only 

organofluorine product formed was 2,3,5,6-C6F4HCF3 (Scheme 1), consistent with 

activation of the C-F bond exclusively in the para-position to the trifluoromethyl 

substituent. 

Isomer 4a was fully characterized in our previous studies,10,11 whereas the prior 

characterization of isomer 4b was much more tentative.11 4b has now been completely 

characterized by a combination of multinuclear NMR spectroscopy and X-ray 

crystallography. The presence of a single resonance at δ 30.1 (dd, 1JPRh = 175 Hz, 2JPF = 

27 Hz) in the 31P{1H} NMR spectrum and the symmetry of the 6-iPr substituents, 

observed in the 1H NMR spectrum, indicated the trans arrangement of phosphines in 4b. 
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The fluoride ligand (positioned trans to the NHC ligand) gave rise to a peak at δ -327.0 in 

the 19F NMR spectrum with couplings of 70 and 29 Hz to 103Rh and 31P respectively. The 

X-ray structure of 4b (Figure 2) confirmed the trans-phosphine arrangement and revealed 

a geometry (trans-P-Rh-P 168.77(6); cis-P-Rh-F 84.57(10)) with a level of distortion 

away from regular square-planar similar to that found in 4a (trans-C-Rh-P 166.43(8); 

cis-P-Rh-F 83.27(5)).11 Surprisingly, we observed no substantial difference between the 

Rh-F distances in the two isomers (4a: 2.088(2) Å; 4b: 2.083(3) Å), despite the ligand 

positioned trans to fluoride, changing from PPh3 in 4a to an alkyl-substituted NHC ligand 

in 4b. 

 

Figure 2. Molecular structure of trans-Rh(6-iPr)(PPh3)2F (4b). Ellipsoids are shown at 

the 30% level with all hydrogen atoms removed for clarity. Selected bond lengths (Å) 

and angles (°): Rh(1)-P(1) 2.2987(16), Rh(1)-P(2) 2.2961(16), Rh(1)-C(1) 1.973(6), 

Rh(1)-F(1) 2.083(3), P(1)-Rh(1)-C(1) 94.13(16), P(2)-Rh(1)-C(1) 95.88(16), P(1)-Rh(1)-

P(2) 168.77(6), P(1)-Rh(1)-F(1) 84.57(10), P(2)-Rh(1)-F(1) 85.94(10), C(1)-Rh(1)-F(1) 

174.5(2). 
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Catalytic HDF of C6F5CF3 with 1-3. In order for the Rh-H complexes 1-3 to 

show catalytic HDF properties, the Rh-F complexes 4-6 must be able to reform the 

hydride complexes in presence of a hydrogen source. This was probed through 

stoichiometric studies on 4, which showed reaction with Et3SiH (5 equiv) at room 

temperature to regenerate 1 (as well as Et3SiF), but only very slowly (ca. 50% conversion 

after 140 h). Raising the temperature to 90 C consumed all of the remaining starting 

material in < 1h (Scheme 1). There was no side reaction of 1 with Et3SiH, as was 

independently verified by treatment of 1 with the silane (10 equiv) in C6D6 over 20 h at 

90 C.13  

 

Scheme 1. Interconversion of Rh(6-iPr)(PPh3)2X (X = H, 1; F, 4). 

 

To allow both the forward and the reverse steps of an HDF cycle to proceed on a 

reasonable timescale, catalysis was performed at 90 C with 10 mol% of catalyst 1 (Table 

1). Under these conditions perfluorotoluene underwent mono-, di- and even tri-HDF at 

the aryl ring, while leaving the benzylic fluorines intact (Table 1, entry 1). The mono-

HDF of C6F5CF3 gave 2,3,5,6-C6F4HCF3 and 2,3,4,5-C6F4HCF3 as a result of C-F 

activation both para and ortho to the CF3 group, respectively (Table 1, entry 1). The 

activation at both para and ortho positions takes place only at a higher temperature (90 



 8 

C), as compared with the room temperature stoichiometric reaction of C6F5CF3 and 1, 

which gave only to the para-C-F activation (Scheme 1). Of particular note was the 

formation of a relatively large amount of the di-HDF product 2,3,5-C6F3H2CF3, which 

results from consecutive HDF events (Table 1, entry 1). To probe this further, 2,3,4,5-

C6F4HCF3 was employed as the substrate, which led to formation of the di-HDF species 

2,3,5-C6F3H2CF3 as the major product, alongside a noticeable amount of the tri-HDF 

product 2,5-C6F2H3CF3 (Table 1, entry 2).14 Interestingly, the first HDF event of 2,3,4,5-

C6F4HCF3 occurs para to the CF3 group to give 2,3,5-C6F3H2CF3, while the second HDF 

event occurs meta to give 2,5-C6F2H3CF3. 

Performing HDF of C6F5CF3 and 2,3,4,5-C6F4HCF3 with catalysts 1-3 (10 mol% 

loading) under the same conditions, clearly showed that the catalytic activity decreases 

upon going from 1 to 3 (Table 1, entries 1-6).15  1 exhibits the highest activity, with 9 

turnovers (Table 1, entry 2), while 2 and 3 have lower activity with up to 4 and 2 

turnovers, respectively. In comparison, it is worth noting that Rh(PPh3)4H catalyzes the 

HDF of C6F6, albeit under quite different reducing conditions (5.8 atm H2, excess Et3N), 

with a turnover of 3.4b 
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Table 1. Scope of catalytic Rh(6-NHC) Catalyzed HDF.a 

 

Entry Cat. Substrate Conv. (%)b Product distribution (%)c TONd 

    

    

 

 

1 

 

1 

 

 

40 

 

59 

 

11 

 

27 

 

3 

 

6 

 

2e 

 

1 

 

 

78 

 

- 

 

- 

 

52 

 

33 

 

9 

 

3 

 

2 

 

 

35 

 

83 

 

8 

 

9 

 

 

0 

 

4 

 

4 

 

2 

 

 

16 

 

- 

 

- 

 

100 

 

0 

 

2 

 

5 

 

3 

 

 

22 

 

93 

 

 

0 

 

7 

 

0 

 

2 

 

6 

 

3 

 

 

14 

 

- 

 

- 

 

100 

 

0 

 

1 

 
aConditions: 10 mol% Rh, 0.19 mM substrate, 0.4 mL C6D6, 20 h, 90 C. bDetermined by 

integration of the 19F NMR spectra relative to a standard [C6H5CF3] added at the end of 
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the reaction. Values are the average of 2 catalytic runs. cDetermined by integration of the 

19F NMR spectra. dTON = (moles of fluoroaromatic products x number of HDF 

steps)/moles of catalyst. eTraces of other, unidentified products account for the product 

distribution being < 100%. 

 

Deactivation of 1 by C-H activation. 31P{1H} and 19F NMR spectra of the 

involatile material, left at the end of the catalytic HDF reaction of C6F5CF3 with 1 (Table 

1, Entry 1) showed the presence of a single new rhodium containing product, which was 

identified as the fluoroaryl complex Rh(6-iPr)(PPh3)2(C6F4CF3) (7). As evidenced by the 

stoichiometric reaction described below, this compound is formed by the C-H activation 

of 2,3,5,6-C6F4HCF3, which is the major product of the catalytic HDF of C6F5CF3. When 

1 was heated with an excess of 2,3,5,6-C6F4HCF3 at 90 C, formation of 7 (60%) took 

place along with formation of 4 (40%) (Scheme 2), as evidenced by 31P{1H} and 19F 

NMR analyses . 

As shown in Scheme 2, 2,3,5,6-C6F4HCF3 undergoes HDF ortho to the CF3 

group, providing a pathway to the di-HDF product 2,3,5-C6F3H2CF3 under catalytic 

conditions. However, an additional pathway appears to involve C-H activation of 2,3,5,6-

C6F4HCF3, which ultimately leads to the deactivation of the catalyst through formation of 

7. We observed no further reaction of 7 with Et3SiH, indicating that this species once 

formed, is catalytically inactive. These findings help to rationalize the relatively low 

turnover numbers observed for catalysis with C6F5CF3 (Table 1), although it is worth 

commenting that the noticeably higher TON for 2,3,4,5-C6F4HCF3 with 1 (Table 1, entry 
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2) implies that 2,3,5-C6F3H2CF3 is less prone to activation of the C-H bond para to the 

CF3 group than 2,3,5,6-C6F4HCF3. 

 

Scheme 2. Competing C-F and C-H activation pathways of 1 with 2,3,5,6-C6F4HCF3. 

 

The fluoroaryl complex 7 was characterized by NMR spectroscopy and X-ray 

analysis. The presence of just a doublet resonance at  29.3 (1JPRh = 170 Hz) in the 

31P{1H} spectrum indicates a trans-phosphine arrangement in 7. The 19F NMR spectrum 

shows three resonances in a 3:2:2 ratio between  -55 and -146, consistent with the 

benzylic and two types of aryl fluorines. The distortion away from a square-planar 

geometry in the X-ray crystal structure (Figure 3) and asymmetric orientation of the 6-iPr 

ligands (N(2)-C(1)-Rh(1) = 116.13(19), N(1)-C(1)-Rh(1) = 126.9(2)) are comparable to 

what is found in the Rh-C6F5 analogue.11 
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Figure 3. Molecular structure of 7. Ellipsoids are shown at the 30% level with all 

hydrogen atoms removed for clarity. Selected bond lengths (Å) and angles (°): Rh(1)-

P(1) 2.2965(7), Rh(1)-P(2) 2.3329(17), Rh(1)-C(1) 2.081(3), Rh(1)-C(11) 2.078(2), P(1)-

Rh(1)-P(2) 165.64(2), C(1)-Rh(1)-C(11) 167.81(10), P(1)-Rh(1)-C(1) 91.94(8). 

 

 Proposed Catalytic Cycle for HDF. A catalytic cycle for the HDF of 

polyfluorotoluenes by 1 involving direct reaction of a substrate with the rhodium hydride 

precursor, followed by reaction of the resulting Rh-F species with silane to reform Rh-H 

is shown in Scheme 3. Such a mechanism was proposed a number of years ago by 

Holland to rationalize the Fe(-diketiminate) catalyzed HDF of fluororoaromatics.4d We 

have now established direct experimental evidence of such a simple, two-step pathway. 

The C-F bond activation most probably takes place by SNAr substitution, since the 

regioselectivity of the HDF events is primarily dictated by the electronics of 

polyfluoroarene.  



 13 

 Despite the presence of the strongly donating NHC ligands, the catalytic 

effectiveness of the Rh(6-NHC)(PPh3)2H systems is not that high, presumably because 

they are prone to deactivation by C-H bond activation, combined with the unreactivity of 

the resulting fluoroaryl products (e.g.7, Scheme 3) towards Si-H bonds. Interestingly, this 

behavior is quite different to that reported by Milstein for Rh(PMe3)3(fluoroaryl) 

complexes, which react with silane by Si-H oxidative addition followed by C-H reductive 

elimination to actually afford the HDF product.4a 

 

Scheme 3. Catalytic cycle for the rhodium catalyzed HDF of polyfluorotoluenes in the 

presence of Et3SiH. 

 

Summary 

The interconversion of Rh-H (1) and Rh-F (4) complexes lies at the basis of the 

catalytic HDF of polyfluorotoluenes. The stoichiometric mono-HDF of perfluorotoluene 

by 1 takes place readily at room temperature and leads to exclusive formation of 2,3,5,6-

HC6F4CF3 and 4, which can be reconverted back to 1 by treatment with triethylsilane. 
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Catalysts 1-3 have proven capable not only of mono-HDF, but also of di-HDF and 

even tri-HDF of the benchmark substrate perfluorotoluene, giving access to 

polyfluorotoluenes with lower fluorine content. The relative activity of the catalysts 

decreases as the N‑alkyl substituents get smaller (iPr > Et, > Me), while the HDF 

sequence is ultimately interfered with by C-H activation of lower HDF products, to give 

irreversible formation of fluoroaryl complexes, exemplified by 7. 

Our results suggest that while the presence of a strongly donating NHC ligand 

enhances the activity of Rh complexes as HDF catalysts, the remaining cast of supporting 

ligands is not sufficient to prevent C-H activation. Further studies are focused on fine-

tuning the balance between NHC and PR3 ligands in an effort to shut down this 

deactivation pathway. 

 

Experimental 

All manipulations were carried out using standard Schlenk and glovebox techniques 

under an atmosphere of purified argon and using dried and degassed solvents. NMR 

spectra were referenced to residual C6D5H at  7.15. 1H resonances for the PPh3 ligands 

are only given when they could be assigned unequivocally. 31P{1H} and 19F spectra were 

referenced externally to 85% H3PO4 (85%) and CFCl3 respectively (both  = 0.0). 

Elemental analyses were performed by the Elemental Analysis Service, London 

Metropolitan University, London, UK. Complexes 1-3 were prepared according to the 

literature procedure.10,11 

 trans-Rh(6-iPr)(PPh3)2F (4b). A J. Youngs NMR tube containing a C6D6 (0.5 

mL) solution of 1 (40 mg, 0.050 mmol) and C6F5CF3 (50 L, 0.251 mmol) was prepared 
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inside a glovebox and monitored periodically by NMR spectroscopy over 40 h at room 

temperature, until all of the Rh-H  starting material had reacted. The resulting yellow 

solution was then evaporated to dryness and  the residue washed with hexane (3 mL) and 

dried under vacuum to give 29 mg of a 4:1 mixture of 4a and 4b, respectively (72% 

yield). Both isomers are partially soluble in hexane, and thus cooling the hexane 

washings to -35 C, afforded a small number of X-ray quality crystals of each isomer. 

Manual separation allowed isolation of the orange crystals of 4b from the yellow crystals 

of 4a. While characterization of isomer 4a has been reported previously,11  

characterization of isomer 4b is as follows: 1H NMR (500 MHz, C6D6, 25 C):* δ 7.89 

(sept, 3JHH = 6.88 Hz, 2H, NCH(CH3)2), 2.44 (t, 3JHH = 5.90 Hz, 4H, NCH2), 1.39 (br 

quint, 2H, NCH2CH2), 0.48 (d, 12H, 3JHH = 6.88 Hz, NCH(CH3)2).
* Assignments based 

on TOCSY and COSY analysis. 31P{1H} NMR (202 MHz, C6D6, 25 C): δ 30.1 (dd, 1JPRh 

= 175 Hz, 2JPF = 27 Hz). 19F NMR (470 MHz, C6D6, 25 C): δ -327.0 (dt, 1JFRh = 69.6 

Hz, 2JFP = 28.5 Hz, Rh-F). Anal. calcd for C46H50N2FP2Rh (814.71),%: C, 67.81; H, 6.19; 

N, 3.44. Found, %: C, 67.98; H, 5.95; N, 3.81. 

Catalytic HDF Procedure. Loadings were all carried out inside a glovebox with a 

representative procedure described. To a sample vial containing 15 mg of 1 (0.019 

mmol), were added 0.4 mL C6D6, C6F5CF3 (27 L, 0.19 mmol) and Et3SiH (150 L, 0.94 

mmol). The reaction solution was stirred and transferred to a J. Young’s resealable NMR 

tube. The sealed tube was removed from the glovebox and heated for 20 h at 90 C in an 

oil bath. After cooling to room temperature, the tube was opened and 5 mL ,,,-

trifluorotoluene was added as an internal reference for 19F NMR analysis. 



 16 

Rh(6-iPr)(PPh3)2(C6F4CF3) (7). A C6H6 (2.5 mL) solution of 1 (35 mg, 0.044 

mmol) and 2,3,5,6-C6F4HCF3 (100 L, 0.740 mmol) was stirred and heated at 90 C for 

37 h, in a J. Youngs ampule. The solvent was removed from the reaction solution under 

vacuum and the residue was redissolved in C6D6 (0.5 mL). 31P{1H} NMR analysis 

revealed formation of 7 (60%) and 4 (40%). Layering the benzene solution with hexane 

afforded 16 mg of 7 (34% yield) in the form of X-ray quality orange crystals. 1H NMR 

(500 MHz, C6D6, 25 C ): δ 9.67-9.33 (br, 12H, PC6H5 + 2 x NCH(CH3)2), 8.91-8.76 (br 

s, 20H, PC6H5), 2.53 (m, 4H, NCH2), 1.52 (m, 2H, NCH2CH2), 0.48 (d, 12H, 3JHH = 6.8 

Hz, NCH(CH3)2).
 31P{1H} NMR (202 MHz, C6D6, 25 C): δ 29.3 (d, 1JPRh = 170 Hz). 19F 

NMR (470 MHz, C6D6, 25 C): δ -55.3 (t, 4JFF = 18.8 Hz, 3F, CF3), -107.6 (m, 2F, Rh-o-

C6F4CF3), -146.1 (m, 2F, Rh-m-C6F4CF3). Anal. calcd for C53H50N2F7P2Rh (1012.78),%: 

C, 62.84; H, 4.98; N, 2.74. Found, %: C, 62.99; H, 4.91; N, 2.87. 

X-ray crystallography. Single crystals of compounds for 4b and 7 were analyzed on 

station I19 at the Diamond light source and a Nonius Kappa CCD diffractometer, 

respectively. Both data sets were collected at -123 C, and details of the data collections, 

solutions and refinements are given in Table S1 (see ESI). The structures were solved 

using SHELXS-9721 and refined using full-matrix least squares in SHELXL-97.16  

The crystal sample for 4b was very small and it exhibited significant diffraction fall-

off at higher Bragg angles. For compound 7, the asymmetric unit was seen to comprize 

one molecule of the rhodium complex, half of a molecule of benzene (proximate to an 

inversion centre) and an additional very disordered region of solvent which has been 

treated via PLATON SQUEEZE. Based on the SQUEEZE findings for the latter, in 

conjunction with the height of the electron density peaks prior to application of this 
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algorithm, an allowance of half of a benzene molecule per asymmetric unit has been 

made in the formula presented herein. 

Crystallographic data for compounds 4b and 7 have been deposited with the 

Cambridge Crystallographic Data Centre as supplementary publications CCDC 1012004 

and 1012005, respectively. Copies of the data can be obtained free of charge on 

application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, 

e-mail: deposit@ccdc.cam.ac.uk]. 

 Acknowledgements. We acknowledge financial support from the EPSRC (LS) 

and the University of Bath (RCP). We thank Johnson Matthey plc for the loan of 

hydrated RhCl3.  

 Supporting Information Available: Table S1. CIF files giving X-ray 

crystallographic data for 4b and 7. This material is available free of charge via the 

Internet at http://pubs.acs.org. 

 

References  

1. (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; 

Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) 

O'Hagan, D. J. Fluorine Chem. 2010, 131, 1071. (d) Ojima, I. J. Org. Chem. 

2013, 78, 6358. (e) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; 

Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 

114, 2432. 



 18 

2. (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013, 52, 8214. 

(b) Hollingworth, C.; Gouverneur, V., In C-H and C-X Bond Functionalization: 

Transition Metal Mediation; Ribas, X., Ed. RSC: Cambridge, 2013; pp 193-261. 

3. (a) Kuehnel, M. F.; Lentz, D.; Braun, T. Angew. Chem. Int. Ed. 2013, 52, 3328. 

(b) Whittlesey, M. K.; Peris, E. ACS Catal. 2014, 4, 3152.   

4. (a) Aizenberg, M.; Milstein, D. Science 1994, 265, 359. (b) Aizenberg, M.; 

Milstein, D. J. Am. Chem. Soc. 1995, 117, 8674. (c) Kuhl, S.; Schneider, R.; Fort, 

Y. Adv. Synth. Catal. 2003, 345, 341. (d) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, 

N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 

2005, 127, 7857. (e) Fuchibe, K.; Ohshima, Y.; Mitomi, K.; Akiyama, T. J. 

Fluorine Chem. 2007, 128, 1158. (f) Jäger-Fiedler, U.; Klahn, M.; Arndt, P.; 

Baumann, W.; Spannenberg, A.; Burlakov, V. V.; Rosenthal, U. J. Mol. Catal. A. 

Chemical 2007, 261, 184. (g) Breyer, D.; Braun, T.; Penner, A. Dalton Trans. 

2010, 39, 7513. (h) Kühnel, M. F.; Lentz, D. Angew. Chem. Int. Ed. 2010, 49, 

2933.(i) Wu, J.; Cao, S. ChemCatChem 2011, 3, 1582. (j) Lv, H.; Zhan, J.-H.; 

Cai, Y.-B.; Yu, Y.; Wang, B.; Zhang, J.-L. J. Am. Chem. Soc. 2012, 134, 16216. 

(k) Yow, S.; Gates, S. J.; White, A. J. P.; Crimmin, M. R. Angew. Chem. Int. Ed. 

2012, 51, 12559. (l) Kuehnel, M. F.; Holstein, P.; Kliche, M.; Krüger, J.; 

Matthies, S.; Nitsch, D.; Schutt, J.; Sparenberg, M.; Lentz, D. Chem. Eur. J. 2012, 

18, 10701. (m) Fischer, P.; Götz, K.; Eichhorn, A.; Radius, U. Organometallics 

2012, 31, 1374. (n) Zhan, J.-H.; Lv, H.; Yu, Y.; Zhang, J.-L. Adv. Synth. Catal. 

2012, 354, 1529. (o) Zhao, W.; Wu, J.; Cao, S. Adv. Synth. Catal. 2012, 354, 574. 

(p) Xiao, J.; Wu, J.; Zhao, W.; Cao, S. J. Fluorine Chem. 2013, 146, 76. (q) 



 19 

Akiyama, T.; Atobe, K.; Shibata, M.; Mori, K. J. Fluorine Chem. 2013, 152, 81. 

(r) Lv, H.; Cai, Y.-B.; Zhang, J.-L. Angew. Chem. Int. Ed. 2013, 52, 3203. (s) 

Chen, Z.; He, C.-Y.; Yin, Z.; Chen, L.; He, Y.; Zhang, X. Angew. Chem. Int. Ed. 

2013, 52, 5813. (t) Zámostná, L.; Ahrens, M.; Braun, T. J. Fluorine Chem. 2013, 

155, 132. (u) Li, J.; Zheng, T.; Sun, H. S.; Li, X. Dalton Trans. 2013, 42, 13048. 

(v) Konnick, M. M.; Bischof, S. M.; Periana, R. A.; Hashiguchi, B. G. Adv. Synth. 

Catal. 2013, 355, 632. (w) Podolan, G.; Lentz, D.; Reissig, H.-U. Angew. Chem. 

Int. Ed. 2013, 52, 9491. (x) Sabater, S.; Mata, J. A.; Peris, E. Nat. Commun. 2013, 

4, 2553. (y) Gianetti, T. L.; Bergman, R. G.; Arnold, J. Chem. Sci. 2014, 5, 2517. 

(z) Senaweera, S. M.; Singh, A.; Weaver, J. D. J. Am. Chem. Soc. 2014, 136, 

3002. 

5. Examples of main group catalysts are also known: (a) Scott, V.; Çelenligil-Çetin, 

R.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 2852. (b) Panisch, R.; Bolte, M.; 

Müller, T. J. Am. Chem. Soc. 2006, 128, 9676. (c) Klahn, M.; Fischer, C.; 

Spannenberg, A.; Rosenthal, U.; Krossing, I. Tetrahedron Lett. 2007, 48, 8900. 

(d) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188. (e) Meier, G.; Braun, T. 

Angew. Chem. Int. Ed. 2009, 48, 1546. (f) Caputo, C. B.; Hounjet, L. J.; 

Dobrovetsky, R.; Stephan, D. W. Science 2013, 341, 1374. (g) Ahrens, M.; 

Scholz, G.; Braun, T.; Kemnitz, E. Angew. Chem. Int. Ed. 2013, 52, 5328. (h) 

Stahl, T.; Klare, H. F. T.; Oestreich, M. ACS Catal. 2013, 3, 1578. (i) Arévalo, A.; 

Tlahuext-Aca, A.; Flores-Alamo, M.; García, J. J. J. Am. Chem. Soc. 2014, 136, 

4634.  



 20 

6. Reade, S. P.; Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131, 

1847. IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = 1,3-

bis(2,6-diisopropylphenyl)imidazol-2-ylidene; SIMes = 1,3-bis(2,4,6-

trimethylphenyl)imidazolin-2-ylidene; SIPr  = 1,3-bis(2,6-

diisopropylphenyl)imidazolin-2-ylidene. 

7. (a) Panetier, J. A.; Macgregor, S. A.; Whittlesey, M. K. Angew. Chem. Int. Ed. 

2011, 50, 2783. (b) Macgregor, S. A.; McKay, D.; Panetier, J. A.; Whittlesey, M. 

K. Dalton Trans. 2013, 42, 7386. 

8. Nova, A.; Mas-Ballesté, R.; Lledós, A. Organometallics 2012, 31, 1245. 

9. (a) Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Chem. Soc., Chem. Comm. 

1991, 264. (b) Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz, 

R. N. J. Am. Chem. Soc. 1993, 115, 1429. (c) Atherton, M. J.; Fawcett, J.; 

Holloway, J. H.; Hope, E. G.; Karaçar, A.; Russell, D. R.; Saunders, G. C. J. 

Chem. Soc., Chem. Commun. 1995, 191. (d) Ballhorn, M.; Partridge, M. G.; 

Perutz, R. N.; Whittlesey, M. K. Chem. Commun. 1996, 961. (e) Edelbach, B. L.; 

Jones, W. D. J. Am. Chem. Soc. 1997, 119, 7734. (f) Bosque, R.; Clot, E.; 

Fantacci, S.; Maseras, F.; Eisenstein, O.; Perutz, R. N.; Renkema, K. B.; Caulton, 

K. G. J. Am. Chem. Soc. 1998, 120, 12634. (g) Atherton, M. J.; Fawcett, J.; 

Holloway, J. H.; Hope, E. G.; Martin, S. M.; Russell, D. R.; Saunders, G. C. J. 

Organomet. Chem. 1998, 555, 67. (h) Young, R. J., Jr.; Grushin, V. V. 

Organometallics 1999, 18, 294. (i) Braun, T.; Noveski, D.; Neumann, B.; 

Stammler, H.-G. Angew. Chem. Int. Ed. 2002, 41, 2745. (j) Bellabarba, R. M.; 

Nieuwenhuyzen, M.; Saunders, G. C. Organometallics 2003, 22, 1802. (k) 



 21 

Noveski, D.; Braun, T.; Schulte, M.; Neumann, B.; Stammler, H. G. Dalton 

Trans. 2003, 4075. (l) Noveski, D.; Braun, T.; Neumann, B.; Stammler, A.; 

Stammler, H. G. Dalton Trans. 2004, 4106. (m) Peterson, A. A.; McNeill, K. 

Organometallics 2006, 25, 4938. (n) Lindup, R. J.; Marder, T. B.; Perutz, R. N.; 

Whitwood, A. C. Chem. Commun. 2007, 3664. (o) Braun, T.; Noveski, D.; 

Ahijado, M.; Wehmeier, F. Dalton Trans. 2007, 3820. (p) Braun, T.; Wehmeier, 

F.; Altenhöner, K. Angew. Chem. Int. Ed. 2007, 46, 5321. (q) Braun, T.; Salomon, 

M. A.; Altenhoner, K.; Teltewskoi, M.; Hinze, S. Angew. Chem. Int. Ed. 2009, 48, 

1818. (r) Teltewskoi, M.; Panetier, J. A.; Macgregor, S. A.; Braun, T. Angew. 

Chem. Int. Ed. 2010, 49, 3947. (s) Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, 

S. A.; McGrady, J. E.; Perutz, R. N. Acc. Chem. Res. 2011, 44, 333. (t) Braun, T.; 

Wehmeier, F. Eur. J. Inorg. Chem. 2011, 613. (u) Raza, A. L.; Panetier, J. A.; 

Teltewskoi, M.; Macgregor, S. A.; Braun, T. Organometallics 2013, 32, 3795. (v) 

Procacci, B.; Blagg, R. J.; Perutz, R. N.; Rendón, N.; Whitwood, A. C. 

Organometallics 2014, 33, 45. 

10. Bramananthan, N.; Carmona, M.; Lowe, J. P.; Mahon, M. F.; Poulten, R. C.; 

Whittlesey, M. K. Organometallics 2014, 33, 1986. 

11. Segarra, C.; Mas-Marzá, E.; Lowe, J. P.; Mahon, M. F.; Poulten, R. C.; 

Whittlesey, M. K. Organometallics 2012, 31, 8584. 

12. As previously reported (ref 11), 1 exists in solution as 1:2 mixture of the cis- and 

trans-phosphine isomers 1a and 1b, respectively. 

13. This experiment revealed that the 1:2 ratio of cis: trans-phosphine isomers 1a and 

1b was unchanged even after 20 h at 90 C. Upon increasing the temperature to 



 22 

110 C for a further 3 days, there was significant decomposition of both isomers, 

leading to the appearance of PPh3 and O=PPh3 and other signals of unknown 

origin in the 31P{1H} NMR spectrum. 

14. Assigned by comparison to the 19F NMR spectrum of an authentic sample (C6D6, 

376 MHz, 25 C: δ -61.95 (d, 4JFH = 12.4 Hz, 3F, CF3), -117.02 (m, 1F), -120.62 

(m, 1F)). The 19F NMR spectrum of the alternative product, 2,3-C6F2H3CF3, is 

very different (C6D6, 376 MHz, 25 C: δ -61.16 (d, 4JFH = 11.7 Hz, 3F, CF3), -

136.12 (m, 1F), -139.97 (m, 1F)), making the two isomers easy to differentiate  

15. There was no enhancement in the activity of 1 upon changing Et3SiH to either 

(EtO)3SiH or Ph2SiH2. 

16.  Sheldrick, G. M. Acta. Cryst. 1990, 467-473, A46. Sheldrick, G. M, SHELXL-97, 

a computer program for crystal structure refinement, University of Göttingen, 

1997. 

 

 

 

 

 

 

 

 

 

 



 23 

For Table of Contents Use Only 

 

Mechanistic Studies of the Rhodium NHC Catalyzed Hydrodefluorination of 

Polyfluorotoluenes 

 

Leonid Schwartsburd, Mary F. Mahon, Rebecca C. Poulten and Michael K. Whittlesey 

 

 

 

 


