41 research outputs found
The camera of the fifth H.E.S.S. telescope. Part I: System description
In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S.
(High Energy Stereoscopic System) array reached their tenth year of operation
in Khomas Highlands, Namibia, a fifth telescope took its first data as part of
the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with
a highly pixelized camera in its focal plane, improves the sensitivity of the
current array by a factor two and extends its energy domain down to a few tens
of GeV.
The present part I of the paper gives a detailed description of the fifth
H.E.S.S. telescope's camera, presenting the details of both the hardware and
the software, emphasizing the main improvements as compared to previous
H.E.S.S. camera technology.Comment: 16 pages, 13 figures, accepted for publication in NIM
NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array
NectarCAM is a camera proposed for the medium-sized telescopes of the
Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV
to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the
heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog
to Digital converter. The camera will be equipped with 265 7-photomultiplier
modules, covering a field of view of 8 degrees. Each module includes the
photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and
Ethernet transceiver. The recorded events last between a few nanoseconds and
tens of nanoseconds. The camera trigger will be flexible so as to minimize the
read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data
rate of more than 4 kHz with less than 5\% dead time. The camera concept, the
design and tests of the various subcomponents and results of thermal and
electrical prototypes are presented. The design includes the mechanical
structure, cooling of the electronics, read-out, clock distribution, slow
control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
Simultaneous operation and control of about 100 telescopes for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) project is an initiative to build the next generation ground-based very high energy (VHE) gamma-ray instrument. Compared to current imaging atmospheric Cherenkov telescope experiments CTA will extend the energy range and improve the angular resolution while increasing the sensitivity up to a factor of 10. With about 100 separate telescopes it will be operated as an observatory open to a wide astrophysics and particle physics community, providing a deep insight into the non-thermal high-energy universe. The CTA Array Control system (ACTL) is responsible for several essential control tasks supporting the evaluation and selection of proposals, as well as the preparation, scheduling, and finally the execution of observations with the array. A possible basic distributed software framework for ACTL being considered is the ALMA Common Software (ACS). The ACS framework follows a container component model and contains a high level abstraction layer to integrate different types of device. To achieve a low-level consolidation of connecting control hardware, OPC UA (OPen Connectivity-Unified Architecture) client functionality is integrated directly into ACS, thus allowing interaction with other OPC UA capable hardware. The CTA Data Acquisition System comprises the data readout of all cameras and the transfer of the data to a camera server farm, thereby using standard hardware and software technologies. CTA array control is also covering conceptions for a possible array trigger system and the corresponding clock distribution. The design of the CTA observations scheduler is introducing new algorithmic technologies to achieve the required flexibility
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
La photo-détection avec les SiPM dans le cadre du CTA
International audienc
Towards a flexible array control and operation framework for CTA
The Cherenkov Telescope Array (CTA) \cite{CTA:2010} will be the successor to
current Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S., MAGIC
and VERITAS. CTA will improve in sensitivity by about an order of magnitude
compared to the current generation of IACTs. The energy range will extend from
well below 100 GeV to above 100 TeV. To accomplish these goals, CTA will
consist of two arrays, one in each hemisphere, consisting of 50-80 telescopes
and composed of three different telescope types with different mirror sizes. It
will be the first open observatory for very high energy -ray astronomy.
The Array Control working group of CTA is currently evaluating existing
technologies which are best suited for a project like CTA. The considered
solutions comprise the ALMA Common Software (ACS), the OPC Unified Architecture
(OPC UA) and the Data Distribution Service (DDS) for bulk data transfer. The
first applications, like an automatic observation scheduler and the control
software for some prototype instrumentation have been developed.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy
Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184
The ATLAS liquid argon calorimeter read-out system
The Liquid Argon calorimeters play a central role in the ATLAS experiment. The environment at the LHC collider imposes challenging tasks to their read-out system. To achieve measurements of particles and trigger signals at high precision, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by front-end boards, which digitize and sample the incoming pulse. Read-out Driver (ROD) boards further process the data at a trigger rate of up to 75 kHz. An optimal filtering procedure is applied to optimize the signal-to-noise ratio. The ROD boards calculate precise energy, time and quality of the detector pulse, which are then sent to the DAQ. In addition, the RODs perform a monitoring of the data. The architecture of the ATLAS Liquid Argon detector read-out is discussed, in particular the design and functionality of the ROD board. Performance results obtained with ROD prototypes as well as experience from complete test setups with final production boards are reported
Simultaneous operation and control of about 100 telescopes for the Cherenkov Telescope Array
The CTA (Cherenkov Telescope Array) project is an initiative to build the next generation ground-based very high energy (VHE) gamma-ray instrument. Compared to current imaging atmospheric Cherenkov telescope experiments CTA will extend the energy range and improve the angular resolution while increasing the sensitivity by a factor of 10. With these capabilities it is expected that CTA will increase the number of known VHE gamma-ray sources from O(100) to O(1000), and will raise the field of ground based VHE gamma-ray astronomy to the level of astronomy with radio waves or X-rays. With about separate 100 telescopes it will be operated as an observatory open to a wide astrophysics and particle physics community, providing a deep insight into the non-thermal high-energy universe. The presentation will give an overview on the principles of the CTA Array Control system (ACTL), responsible for several essential control tasks including the evaluation, selection, preparation, scheduling, and finally the execution of observations with the array. A possible basic distributed software framework for ACTL being considered is the ALMA Common Software (ACS). Used by several projects, this open-source software was originally developed for the Atacama Large Millimeter Array (ALMA), a joint project between astronomical organizations in Europe, North America, and Asia for a millimeter and sub-millimeter array. ALMA is presently being commissioned in Chile and will consist of at least fifty-four 12 meter antennas and a further twelve 7 meter antennas. The ACS framework follows a container component model and contains a high level abstraction layer to integrate different types of device. To achieve a low-level consolidation of connecting control hardware, OPC UA client functionality is integrated directly into ACS, thus allowing interaction with other OPC UA capable hardware. In addition to the presentation of the ACS middleware, new techniques for automatic code generation based on an UML representation of the ACS components will be introduced and illustrated with first examples