83 research outputs found

    Locating and mitigating risks to children associated with major sporting events

    Get PDF
    Despite recent efforts to blend sport and human rights, activism for children's rights in sport has historically been marginalised. The positive 'social legacy' of sport events frequently masks more problematic issues, including child exploitation. We argue that harms to children in hosting communities of major sporting events (MSEs) should be a focus for both research and intervention since the plight of such children is currently a political blind spot. The article examines the evidence for four major sources of risk for children associated with such events: child labour, displacement resulting from forced evictions for infrastructure development and street clearance, child sexual exploitation, and human trafficking affecting children. The weakness of the resulting evidence is explained in relation to the methodological and ethical difficulties of conducting research on such hidden and marginal populations and to the fact that risks to children are often masked by adult social problems. It is argued that much more robust research designs, focused specifically on children, are essential in order to verify the many assertions made about risks to children associated with MSEs. Some mitigating interventions are briefly examined and an action plan for risk-mitigation work at future MSEs is proposed. Finally, drawing on wider debates about Centres and Peripheries in social and economic theory, we question whether major international sport organisations might choose to engage with projects like child protection for strategic rather than humanitarian reasons, using them as a kind of ethical fig leaf in order to bolster their power bases against threats from the margins. © 2014 © 2014 Taylor & Francis.The Oak Foundation under Grant code OCAY-13-052

    The water quality of the River Enborne, UK: observations from high-frequency Monitoring in a rural, lowland river system

    Get PDF
    This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly), using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding

    Do on-farm natural, restored, managed and constructed wetlands mitigate agricultural pollution in Great Britain and Ireland?

    Get PDF
    Wetlands in agricultural landscapes offer a number of benefits to the landscape function in which they are set, reducing nutrient runoff, providing additional habitat mosaics and offering various ecosystem services. They require careful planning and maintenance in order to perform their optimum design function over a prolonged period of time. They should be treated as functional units of farm infrastructure rather than fit-and-forget systems. A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of pollution from agriculture. This programme was set up to meet the requirements of the European Water Framework Directive (WFD) EU (2000). Nutrient loss from agricultural land has been suggested as a major cause of elevated nutrient concentrations in surface waters in the UK. Nitrogen (N) and phosphorus (P) are of particular concern as an excess of either nutrient can lead to eutrophication of freshwater systems and coastal waters. Agriculture has also been identified as a significant source of suspended sediment (SS) concentrations in UK rivers and agriculturally derived sediment has been identified as a source of increased bed-sediment P concentrations in rivers. High bed sediments loads have other negative impacts, such as clogging river gravels reducing fish spawning. There is considerable evidence in the published and grey literature that wetlands have the ability to remove nutrients and sediment and thus reduce the load on receiving waters. Wetlands have also been reported to perform other ecosystem services, such as reducing floods, supporting biodiversity and sequestering carbon. A policy to promote the conservation, management, restoration or construction of wetlands could help to mitigate the impacts of N, P and SS from agriculture delivering requirements of WFD through Catchment Sensitive Farming following an Ecosystem Approach and Catchment Based Approach promoted by Defra. It could also meet other commitments such as implementing the Ramsar and Biodiversity Conventions to which the UK is a signatory. However, the term wetlands covers a wide range of habitat types and it is important that policy makers are provided with accurate, robust and independently reviewed information on the degree to which different types of wetland perform these services under different circumstances, so that policy can most best targeted. This systematic review assesses the available evidence on the performance of various wetland types on farms to reduce nutrient input and suspended sediments to receiving waters. It provides a defensible evidence base on which to base policy. The studies reviewed cover different input loads and the analysis compares performance of these wetland systems in respect of % reduction efficiency. In England and Wales, Defra, working closely with the Environment Agency and Natural England, has commissioned this systematic review on how effective, and what influences the effectiveness of wetlands at mitigating N, P and SS inputs from agriculture to receiving freshwater in the United Kingdom and Ireland

    Do on-farm natural, restored, managed and constructed wetlands mitigate agricultural pollution in Great Britain and Ireland?: a systematic review

    Get PDF
    Wetlands in agricultural landscapes offer a number of benefits to the landscape function in which they are set, reducing nutrient runoff, providing additional habitat mosaics and offering various ecosystem services. They require careful planning and maintenance in order to perform their optimum design function over a prolonged period of time. They should be treated as functional units of farm infrastructure rather than fit-and-forget systems. A high priority topic within the Department for Environment, Food and Rural Affairs (DEFRA) water quality programme is the mitigation of pollution from agriculture. This programme was set up to meet the requirements of the European Water Framework Directive (WFD) EU (2000). Nutrient loss from agricultural land has been suggested as a major cause of elevated nutrient concentrations in surface waters in the UK. Nitrogen (N) and phosphorus (P) are of particular concern as an excess of either nutrient can lead to eutrophication of freshwater systems and coastal waters. Agriculture has also been identified as a significant source of suspended sediment (SS) concentrations in UK rivers and agriculturally derived sediment has been identified as a source of increased bed-sediment P concentrations in rivers. High bed sediments loads have other negative impacts, such as clogging river gravels reducing fish spawning. There is considerable evidence in the published and grey literature that wetlands have the ability to remove nutrients and sediment and thus reduce the load on receiving waters. Wetlands have also been reported to perform other ecosystem services, such as reducing floods, supporting biodiversity and sequestering carbon. A policy to promote the conservation, management, restoration or construction of wetlands could help to mitigate the impacts of N, P and SS from agriculture delivering requirements of WFD through Catchment Sensitive Farming following an Ecosystem Approach and Catchment Based Approach promoted by Defra. It could also meet other commitments such as implementing the Ramsar and Biodiversity Conventions to which the UK is a signatory. However, the term wetlands covers a wide range of habitat types and it is important that policy makers are provided with accurate, robust and independently reviewed information on the degree to which different types of wetland perform these services under different circumstances, so that policy can most best targeted. This systematic review assesses the available evidence on the performance of various wetland types on farms to reduce nutrient input and suspended sediments to receiving waters. It provides a defensible evidence base on which to base policy. The studies reviewed cover different input loads and the analysis compares performance of these wetland systems in respect of % reduction efficiency. In England and Wales, Defra, working closely with the Environment Agency and Natural England, has commissioned this systematic review on how effective, and what influences the effectiveness of wetlands at mitigating N, P and SS inputs from agriculture to receiving freshwater in the United Kingdom and Ireland

    Determination of the forms and stability of phosphorus in wastewater effluent from a variety of treatment processes

    Get PDF
    Eutrophication of surface waters is a major issue across the planet, with diffuse (agricultural) and point sources (wastewater treatment works, WwTW) being the main inputs. In the UK WwTW effluent discharges are currently permitted for discharge based on total phosphorus concentration, whereas environmental quality standards (EQS) are set as soluble reactive phosphorus (SRP), which better reflects the bioavailable fraction of phosphorus present in water. This study reports for the first time, concentrations and relative proportions of SRP in effluent from a number of different WwTW employing aluminium and iron dosing for phosphorus removal. In the case of aluminium treatment, SRP constituted only 10 +/- 4% of the 0.75 mg P/l total phosphorus in the effluent. Where iron was dosed SRP comprised 66% +/- 20% of the total phosphorus present where a single dose was applied, which dropped to 26 +/- 17%after a second dose and additional tertiary sand filtration. Phosphorus was determined using two established analytical methods after acid digestion, filtration to 0.45 um (on site and after return to the laboratory and refrigeration for up to 9 days) and settlement. Phosphorus speciation was shown to be stable within all effluents for up to 6 days storage at a temperature of <5 C without the need to filter on site and this was recommended for future effluent monitoring programmes and compliance assessment. Furthermore, because iron and aluminium dosing significantly reduce the SRP proportion in effluents, future monitoring programmes and policy decisions regarding meeting the phosphorus EQS derived as SRP should take this into account

    Setting priorities for humanitarian water, sanitation and hygiene research: a meeting report

    Get PDF
    Recent systematic reviews have highlighted a paucity of rigorous evidence to guide water, sanitation and hygiene (WASH) interventions in humanitarian crises. In June 2017, the Research for Health in Humanitarian Crises (R2HC) programme of Elhra, convened a meeting of representatives from international response agencies, research institutions and donor organisations active in the field of humanitarian WASH to identify research priorities, discuss challenges conducting research and to establish next steps. Topics including cholera transmission, menstrual hygiene management, and acute undernutrition were identified as research priorities. Several international response agencies have existing research programmes; however, a more cohesive and coordinated effort in the WASH sector would likely advance this field of research. This report shares the conclusions of that meeting and proposes a research agenda with the aim of strengthening humanitarian WASH policy and practice
    • 

    corecore