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Abstract: Eutrophication of surface waters is a major issue across the 

planet, with diffuse (agricultural) and point sources (wastewater 

treatment works, WwTW) being the main inputs. In the UK WwTW effluent 

discharges are currently permitted for discharge based on total 

phosphorus concentration, whereas environmental quality standards (EQS) 

are set as soluble reactive phosphorus (SRP), which better reflects the 

bioavailable fraction of phosphorus present in water. This study reports 

for the first time, concentrations and relative proportions of SRP in 

effluent from a number of different WwTW employing aluminium and iron 

dosing for phosphorus removal. In the case of aluminium treatment, SRP 

constituted only 10 ±4% of the 0.75mg P/l total phosphorus in the 

effluent. Where iron was dosed SRP comprised 66% ±20% of the total 

phosphorus present where a single dose was applied, which dropped to 26 

±17% after a second dose and additional tertiary sand filtration. 

Phosphorus was determined using two established analytical methods after 

acid digestion, filtration to 0.45µm (on site and after return to the 

laboratory and refrigeration for up to 9 days) and settlement. Phosphorus 

speciation was shown to be stable within all effluents for up to 6 days 

storage at a temperature of <5°C without the need to filter on site and 

this was recommended for future effluent monitoring programmes and 

compliance assessment. Furthermore, because iron and aluminium dosing 

significantly reduce the SRP proportion in effluents, future monitoring 

programmes and policy decisions regarding meeting the phosphorus EQS 

derived as SRP should take this into account. 
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Abstract 10 

Eutrophication of surface waters is a major issue across the planet, with diffuse (agricultural) 11 

and point sources (wastewater treatment works, WwTW) being the main inputs. In the UK 12 

WwTW effluent discharges are currently permitted for discharge based on total phosphorus 13 

concentration, whereas environmental quality standards (EQS) are set as soluble reactive 14 

phosphorus (SRP), which better reflects the bioavailable fraction of phosphorus present in 15 

water. This study reports for the first time, concentrations and relative proportions of SRP in 16 

effluent from a number of different WwTWemploying aluminium and iron dosing for 17 

phosphorus removal.In the case of aluminium treatment, SRP constituted only 10 ±4% of the 18 

0.75mg P/l total phosphorus in the effluent. Where iron was dosed SRP comprised 66% 19 

±20% of the total phosphorus present where a single dose was applied, which dropped to 26 20 

±17% after a second dose and additional tertiary sand filtration. Phosphorus was determined 21 

using two established analytical methods after acid digestion, filtration to 0.45µm(on site and 22 

after return to the laboratory and refrigeration for up to 9 days) and settlement. Phosphorus 23 

speciation was shown to be stable within all effluents for up to 6 days storage at a 24 

temperature of <5°C without the need to filter on site and this was recommended for future 25 

effluent monitoring programmes and compliance assessment.Furthermore, because iron and 26 

aluminium dosing significantly reduce the SRP proportion in effluents, future monitoring 27 

programmes and policy decisions regarding meeting the phosphorus EQS derived as SRP 28 

should take this into account.  29 

 30 
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*Manuscript



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 33 

1. INTRODUCTION  34 

Inputs of phosphorus from wastewater treatment works (WwTW) and agricultural diffuse 35 

sources have led to significant contamination of much of the UK‟s and the planet‟s surface 36 

waters (Hogan, 2014). Across Europe, river basins are failing nutrient standards with 37 

typically more than half of all waterbodies not meeting the standards set as soluble reactive 38 

phosphorus (SRP), the immediately bioavailable fraction of phosphorusEEB, 2010). For the 39 

UK for example, assessments under the Water Framework Directive (WFD) have estimated 40 

that only 53% of waterbodies are compliant with the new site specific Environmental Quality 41 

Standards (EQS) designed to provide conditions suitable to support good ecological status for 42 

diatoms and macrophytes (WFD, 2013). Phosphorus present in many forms in sewage 43 

(Houhou et al., 2009) can become bioavailable during wastewater treatment processes to the 44 

extent that the majority discharged into receiving waters is measured as SRP and considered 45 

bioavailable to aquatic plants (Millier and Hooda, 2011). Several EU Directives have set out 46 

to decrease concentrations of phosphorus in EU rivers, including the Urban Wastewater 47 

Treatment Directive (UWwTD, EU, 1991), Birds and Habitats Directive (EU, 1992) and 48 

Water Framework Directive (WFD, 2000). Diffuse agriculture sources of phosphorus have 49 

been reduced via measures funded under agricultural countryside stewardship schemes 50 

(Defra, 2015). For point source WwTW effluents, measures are available and have been 51 

implemented for reducing phosphorus loads to waterbodies through chemical dosing using 52 

iron or aluminium salts (Omoike and van Loon, 1999). Currently across the EU a population 53 

of 187 million is served by WwTW reducing phosphorus concentrations under the Urban 54 

Wastewater Treatment Directive (UWwTD, EU, 1991), approximately 37% of the entire 55 

population (EEA, 2015). In the UK there is phosphorus reduction at almost 700 56 

WwTWtreating a total population of approximately 24 million people. In the UK alone, over 57 

£10bn has been invested in wastewater treatment between 1990 and 2005 (Defra 2002), 58 

however, there is still widespread non compliance with WFD EQS and few measureable 59 

improvements in ecological status (UKWIR, 2012). The UK has now starting a new cycle of 60 

investment (2015-2020) which will include treatment at yet further WwTW, as well as 61 

investigations to achieve effluent phosphorus levels of less than 1 mg-P/l as total P, the 62 

currently accepted Best Available Technique for chemical dosing (EA, 2012). Whether or not 63 

this additional treatment is likely to result in widespread complianceis uncertain.  64 
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 65 

Interpreting the fate and compliance of phosphorus in the aquatic environment is complicated 66 

by the fact that different Directives have set differing criteria for phosphorus standards and 67 

permits, for example: 68 

 69 

 WFD EQS (WFD, 2013) is set as soluble reactive phosphorus, samples are filtered 70 

(0.45µm) followed by molybdenum blue colorimetric determination(Murphy and 71 

Riley, 1962). 72 

 Habitats Directive standards are set as total reactive phosphorus,on unfiltered 73 

sample determined by molybdenum blue colorimetric determination(Murphy and 74 

Riley, 1962). 75 

 UWwTDpermits for WwTW effluents discharged to rivers are set as total 76 

phosphorus, determined by Inductively Couple Plasma (ICP) d on unfiltered sample 77 

using acid digestion (Jarvie et al., 2002).  78 

 79 

There may be a number of reasons why different forms of phosphorus have been determined, 80 

ranging from application of the precautionary principle, assuming that eventually particulate 81 

bound phosphorus may become bioavailable once discharged into the aquatic environment; 82 

through to the convenience of using colorimetric analysis of unfiltered samples. However, 83 

understanding the form of phosphorus in effluents (particularly SRP) and receiving waters 84 

and using an appropriate analytical technique not only allows the application of sound 85 

science to environmental regulation, but can also avoid excessive conservatism in standard 86 

setting leading to the implementation of expensive technologies which deliver little or no 87 

environmental benefit.    88 

 89 

The situation is further complicated by previous definitions used and analytical procedures 90 

implemented to monitor phosphorus in the aquatic environment.The forms of phosphorus 91 

considered to be of particular environmental/ecological relevance are referred to in current 92 

UK technical recommendations for the implementation of the Water Framework Directive 93 

(WFD, 2013) and UK government river basin planning guidance (Defra, 2014) as “reactive 94 

phosphorus” (RP). This was previously and more commonly in the scientific literature 95 

described using the term “soluble reactive phosphorus” (SRP). Both these authoritative 96 
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reports contain the following statements relating to the definition of relevant phosphorus 97 

species:  98 

 99 

a) “Reactive phosphorus" means the concentration of phosphorus as determined using 100 

the phosphomolybdenum blue colorimetric method. Where necessary to ensure the 101 

accuracy of the method, samples are recommended to be filtered using a filter not 102 

smaller than 0.45 μm pore size to remove gross particulate matter.  103 

b) Previous UKTAG standards were referred to as soluble reactive phosphorus (SRP). 104 

Most analyses by UK agencies are of molybdate reactive phosphorus in unfiltered 105 

samples from which large particles have been allowed to settle and referred to here 106 

as “reactive phosphorus” (RP). In practice, the difference between RP and SRP is 107 

usually minor”. 108 

Statement (a) prompts the question “when might it be necessary to filter to ensure the 109 

accuracy of the method”? The answer obviously is“always”, otherwise how is it possible to 110 

decide whether or not accuracy is compromised? The truth of the first sentence of statement 111 

(b) was confirmed by a review of the existing methodology(referred to as “orthophosphate”) 112 

used by thirteen laboratories involved in the analysis of surface waters and sewage effluents.  113 

Responses to inquiries regarding methodology were in general agreement, indicating that 114 

samples were not filtered, with several respondents mentioning that “dirty” samples were 115 

allowed to settle before analysis.  The statement in (b) that “In practice, the difference 116 

between RP and SRP is usually minor” is shown by this research to be incorrect.  117 

 118 

This raises important questions concerning inadequacies in the specification of the analytical 119 

methodology for reactive phosphorus, specifically with respect to sample pre-treatment. It is 120 

worth noting that the analytical method (based on the method of Murphy and Riley (1962), 121 

updated as a Standard Method,(SCA, 1992)for reactive phosphorus involves sulphuric acid 122 

based reagents that have the potential to extract phosphorus from particulate matter if this is 123 

present in the sample of interest. The vaguely defined procedure used in the past is therefore 124 

likely to result in the (unwelcome) inclusion of a variable proportion of particulate 125 

phosphorus in the “reactive forms”, depending on: 126 

 127 
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 the type of particulate matter present, its phosphorus content and the lability of such 128 

phosphorus forms to acid dissolution; all widely variable between say sewage effluent 129 

and river water and between different rivers (Haygarth, 1997; Hens and Mercx, 2002); 130 

 the propensity for particles to settle (not known but variable); 131 

 the settlement time allowed (not defined); 132 

 the strengths of the reagents used, which are not necessarily the same in different 133 

laboratories((Jarvieet al, 2002) and the different analytical techniques applied (e.g. 134 

manual, flow injection, auto- or discrete- analysers).  135 

It may be concluded that the historic determination of reactive phosphorus might be 136 

considered imprecise andwith unknown and inconsistent accuracy. Basing consenting policy 137 

and potentially substantial investment on analytical data of unknown and variable reliability 138 

is not sound or credible science.  139 

 140 

There have been previously reported numerous studies into (i) the form and fate of 141 

phosphorus in the aquatic environment (McKelvie et al, 1995; Jarvie et al., 1998;Neal et al., 142 

2000;Palmer-Felgate et al., 2008), (ii) catchment modellingof phosphorus concentrations 143 

(Neal et al., 2010) and (iii) ecological impacts (Stutter et al., 2010). Data are available that 144 

show WwTW not dosing for phosphorus reduction discharge mostly SRP (Millier and 145 

Hooda, 2011).There are, however, no readily available data for phosphorus speciation, and in 146 

particular SRP concentrations, in WwTW effluents dosing iron or aluminium salts for 147 

phosphorus reduction.  148 

 149 

The work reported in this paper was prompted by two factors. Firstly, ecologically relevant 150 

forms of phosphorus for a number of reasons were not being determined sufficiently 151 

rigorously in UK wastewaters discharged to surface waters. Secondly, this was likely to have 152 

serious consequences to the framing of measures under the EU Water Framework Directive 153 

(WFD) (EC, 2000) to control concentrations of phosphorus in surface water. Given that such 154 

measures have the potential to prompt multi-million pound investments in the 155 

implementation of new treatment technologies, it is essential that they are based on a reliable 156 

monitoring data. The pending launch of a major series of UK investigations into phosphorus 157 
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concentrations in effluents (The National Phosphorus Trials) also required the identification 158 

of a robust methodology.  159 

 160 

The aim of this study was to establish a suitable methodology for sample filtration and 161 

storage to preserve phosphorus speciation in WwTW effluents using a variety of treatment 162 

processes, including with and without aluminium or iron dosing for phosphorus reduction. At 163 

the same time, data is presented on the forms of phosphorus in effluents for the first time. It 164 

should be noted that wastewater treatment processes are complex and subject to numerous 165 

microbiological and physico-chemical factors which impact on removal rates and speciation 166 

of chemicals present, including phosphorus. The data presented here focus on the speciation 167 

and stability of phosphorus in the final effluent discharged to the receiving waters after a 168 

variety of treatment processes, from a regulatory point of view.. 169 

 170 

  171 
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 172 

2. METHODOLOGY 173 

 174 

Details of the five WwTW processes selected for sampling are provided in Table 1. Works 175 

receiving predominantly domestic wastewater were chosen to avoid complicating 176 

factorsassociated with any industrial effluent entering the sewerage system. 177 

 178 

Table 1 Details of the selected WwTW treatment processes 179 

 Works A Works B Works C Works D Works E 

Estimated 

population 

10,000 12,000 13,000 6,000 6,000 

Preliminary 

treatment 

Inlet screens & 

grit removal 

Inlet screens & 

grit removal 

Inlet screens & 

grit removal 

Inlet screens & 

grit removal 

Inlet screens & 

grit removal 

Primary treatment Primary 

settlement 

Primary 

settlement  

(2 tanks) 

Primary 

settlement 

Primary 

settlement  

(4 tanks) 

Primary 

settlement 

Secondary 

treatment 

Activated sludge Trickling filters 

(4) 

Activated sludge 

(oxidation ditch) 

Trickling filters 

(4) 

Trickling filters 

(4) 

Final settlement Humus tank Humus tank (4) Humus tank Humus tank Humus tank 

Tertiary treatment None Nitrifying filter, 

biological 

aerated flooded 

filter (BAFF), 

UV treatment 

None None Fluidised bed 

sand filters (3) 

Dosing for P 

removal?  

No Polyaluminium 

chloride 

(Brenntag) into 

the nitrifying 

filter dosed at a 

2:1 Al:P 

stoichiometry 

Iron (II) 

sulphate added 

after screening 

at a 2:1 Fe:P 

stoichiometry 

Iron (II) 

sulphate added 

after screening 

at a 2:1 Fe:P 

stoichiometry 

Iron (II) 

sulphate added 

after screening 

and before sand 

filters at a 2:1 

Fe:P 

stoichiometry 

 180 

 181 

Samples were collected on five occasions between September and November 2014. Samples 182 

were collected using acid washed (5% hydrochloric acid) 1 litre capacity spot samples and 183 

stored in 1.5 litre acid washed (5% hydrochloric acid) polyethylene terephthalate (PET) 184 

bottles. Four replicate determinations for the different forms of phosphorus at time = 0, 1, 3, 185 

6 and 9 days. Time =0 day samples were determined on site using the same colorimetric 186 

method, utilising a Jenway6051 portable colorimeter at a wavelength of 710nm using a 4cm 187 

pathlength cuvette.All samples were stored in a cool box on site and subsequently under 188 

refrigeration at 3-5 °C, before being brought to room temperature immediately prior to 189 

analysis. All filtration was undertaken using disposable 25mm diameter 0.45µm cellulose 190 
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acetate membranes supplied by Cole Parmer Ltd. Filter blanks used for each batch of analysis 191 

showed no significant contamination with phosphorus.  192 

 193 

2.1 Sample pre-treament 194 

A number of different types of sample manipulation were carried out to establish the form of 195 

phosphorus present in the different types of WwTW effluent, to either replicate the methods 196 

currently used for compliance assessment, or to investigate sample stability over a 9 day 197 

period:  198 

 Soluble Reactive Phosphorus (SRP) - used here to denote a determination made on a 199 

0.45 µm filtered sample using the molybdenum blue colorimetric procedure based on 200 

SCA Method A(SCA, 1992) implemented in a batch-wise (15ml scale) manual 201 

process. This was designed to demonstrate adequate sample stability, consistency of 202 

results and to act as a reference point for other determinations and other phosphorus 203 

forms. 204 

 Unfiltered SRP(uf SRP)fully mixed samplewas determined in order to demonstrate 205 

the consequences of not filtering samples and to establish how the distribution of 206 

particulate and soluble reactive forms might change over time, for different storage 207 

periods. This is an analogue of TRP as specified under the Habitats Directive. 208 

 Refiltered SRP was determined in order to make sure that once filtered there was no 209 

further precipitation of particulate phosphorus during storage, which might have 210 

consequences for the operation and usefulness of tertiary filtration processes. 211 

 Unfiltered settled SRP was determined in order to illustrate that orthophosphate 212 

(historically used for monitoring water quality and WwTWUWwTD compliance) 213 

might not be relevant for either of the key regulated forms of phosphorus: total 214 

phosphorus and SRP. 215 

 Filtered laboratorySRP was determined as a check on the need to filter on-site 216 

(filtration on site is an onerous requirement that it would be practically advantageous 217 

to avoid, provided there was clear evidence that it was not essential). 218 

Total phosphorus using ICP-MS 219 

 Total Phosphorus (TP)is the benchmark for all phosphorus forms and offers a total 220 

concentration.  221 
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 Total soluble phosphorus (TSP)was determined by digesting and determining by 222 

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS)on filtered samples. This 223 

provided a check on the extent to which SRP determines all soluble forms. 224 

 225 

2.2 Analytical methodology 226 

2.2.1 Molybdenum blue colorimetric method 227 

The method based on the established Murphy and Riley (1962) approach used the following 228 

reagentswhich were of analytical laboratory grade or higher: Sulphuric acid (25% of 229 

concentrated acid in high purity water, >18 MΩ/cm), ascorbic acid (10g dissolved in 50ml 230 

high purity water plus 50ml 25% sulphuric acid solution). This was stored in an amber lab 231 

glass bottle in refrigerator and was stable for at least a week and can be used as long as it 232 

remains colourless. 233 

A mixed reagent was prepared as follows: 12.5g ammonium heptamolybdatetetrahydrate, was 234 

dissolved in 125ml high purity water. 0.5g potassium antimony tartrate,was dissolved in in 235 

20ml high purity water. The molybdate solution was added to 350ml 25% sulphuric acid 236 

solution, stirring continuously, followed by the tartrate solution and mixed well. Stored in a 237 

borosilicate glass bottle the reagent was stable for several months. 238 

For phosphorus determination, 0.25 ml ascorbic acid was added to 12.5ml sample in HCl 239 

washed (5%) 15ml centrifuge tubes (Fisher Scientific, UK) followed by 0.25ml mixed 240 

reagent to the solution. Colour was allowed to develop for 10 minutes, followed by 241 

measurement within 30 minutes at 710nmin a 1cm acrylic disposable cuvette, using a Cecil 242 

2021 colorimeter.  243 

 244 

Limit of detection (LOD) was estimated from 6 replicates of blank determinations and 245 

calculated as 3 times the standard deviation of the blank using a 1cm cell. To ensure data 246 

quality the following procedures were carried out: 247 

 248 

1) Blanks for each batch of analysis 249 

2) Filter blanks for each batch of filtrations 250 

3) External reference material to be included in each batch of analysis: EnviroMAT EP-L-3 251 

drinking water, low level concentrate (QMX Ltd).  252 

4) Control chart constructed for duration of the studies.   253 
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 254 

2.2.2 Total P 255 

Total phosphorus was determined byadding concentrated hydrochloric acid (to a 256 

concentration of 10% (e.g. 1.25ml concentrated HCl –Romil-Spa super purity acid, Fisher, 257 

Scientific, UK  + 12.5ml sample) into acid washed (5% HCl) 15ml centrifuge tubes (Fisher 258 

Scientific UK) and heated to 90
o
C for 3 hours until all particulates were digested. Total 259 

phosphorus determinations were made using a Thermo Scientific X Series 2Inductively 260 

Coupled Plasma-Mass Spectrometer in collision cell mode.  261 

 262 

Overall analytical performance data are provided in Table 2. 263 

 264 

Table 2. SRP and total soluble phosphorus analytical performance data 265 

 Unit (mgP/l) 

Within batch sd
1
 Between batch sd

1
 Total sd

1
 Limit of detection 

Molybdenum Blue method (SRP) 

 Sd
1
 0.021 0.014 0.025 0.03 

 DoF
2
 12 12 38 12 

 rsd% 4.2 2.7 5.0  

ICP-MS (TP) 

 Sd
1
 0.023 0.033 0.040 0.01 

 DoF
2
 12 12 15 12 

 rsd% 4.6 6.6 8.0  

1
sd = standard deviation;  

2
DoF = degrees of freedom 266 

  267 
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3. RESULTS AND DISCUSSION 268 

 269 

Data for the different processes are shown separately.  The five different sampling occasions 270 

at each works are termed “runs”. It should be noted that for different runs the effluent 271 

concentrations were different (they were different samples) so these differences do not show 272 

anything other than acting as indications of the variability of phosphorus concentrations at the 273 

works concerned at the time of sampling. Figure 1 shows the stability of SRP in solution, 274 

after filtering the sample on site and then refrigerating for up to a period of 9 days. No 275 

statistical differences in measured concentrations were observed across the storage period. 276 

  277 
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 305 

Figure 1.  SRP for samples filtered on site thenstored (4 
o
C)over a period of 9 days 306 

 307 

Figure 2 shows the mean sample stability over the course of 9 days for samples collected 308 

from the WwTWunfiltered then refrigerated at 4 
o
C for 1, 3, 6 and 9 days before filtration 309 

followed by SRP determination. The data show that SRP is sufficiently stable not to require 310 

filtration on site; any observed changes in SRP concentration were statistically 311 
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insignificantbased on the techniques used (<0.03mg P/l at concentrations less than 0.5mg P/l 312 

or <5-10% variance at higher observed concentrations).  313 

 314 

 315 

 316 

 317  318 

 319 

Figure 2.SRP concentrationsfor samples collected unfiltered then refrigerated for up to 320 

9 days prior to filtration and analysis 321 

Table 3 provides a comparison of proportion of phosphorus present in the effluents in the 322 

different forms. WwTW A, the undosed works unsurprisingly has the highest total 323 

phosphorus concentration of over 5mgP/l, with 96% present as SRP. The aluminium dosed 324 

WwTWB had a mean TP of 0.81mgP/l significantly below its 2mgP/l permit value, with only 325 

10% of the phosphorus present as SRP. Total soluble phosphorus (TSP), i.e. phosphorus 326 

filtered through 0.45 µm and determined via acid digestion ICP-MS comprised 34% of the 327 

TP, suggesting filterable colloidal material is detectable by ICP-MS but not molybdenum 328 

blue „reactive‟. The iron dosed effluents lie somewhere between these extreme values. 329 

WwTW C where Fe was dosed prior to primary treatment with secondary oxidation ditch 330 

treatment had low concentrations of TP (1.2mgP/l) but 84% was present as SRP (which was 331 

not statistically significantly different from TP) and therefore accounted for all of the 332 

filterable phosphorus. 333 

 334 

WwTW D which was a biofiltration plant receiving iron dosing prior to primary settlement 335 

had slightly lower TP concentrations of 0.79mgP/l, 66% of which was SRP, which again 336 
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comprised all of the filterable P. WwTW E was another biofiltration plant, but received 2 337 

doses of iron, once before primary treatment and once again prior to filtration through a 338 

fluidised bed sand filter. TP concentrations in the effluent were very low (0.22mgP/l) and 339 

SRP was only 26% of the TP concentration. Similar to the Al dosing works TSP was higher 340 

at 49% suggesting that there is filterable phosphorus present in the effluent that is not 341 

reactive.   342 
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Table 3. SRP and total soluble phosphorus (TSP) versus total phosphorus 343 

  

% of TP 

WwTW TP (mg P/l) SRP (%) ±% TSP (%) ±% 

A  5.5 96 2 94 1 

B  0.81 10 4 34 13 

C  1.2 84 26 90 6 

D  0.79 66 20 67 12 

E  0.22 26 17 49 16 

± Values are confidence intervals (p=0.1) on between day average estimates  344 

 345 

Figure 3shows the P speciation graphically and highlights the loss of SRP in the aluminium 346 

dosed and iron „double dosed‟ effluent with associated error bars representing variation about 347 

the mean for the sample replicates.  348 
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 349 

Figure 3.  Overall summary of concentrations and species for the different treatment 350 

processes (with 90 percentile error bars) 351 

The influence of chemical dosing is shown to be potentially important to the form of 352 

phosphorus discharged and its likely environmental impact in the receiving water. Without 353 

chemical dosing, the total phosphorus concentration in the effluent tested was of the order of 354 

5mg P/l. This is consistent with previous values obtained for WwTW effluents (e.g. Gardner 355 

et al., 2012). Phosphorus discharged consisted almost entirely (85-95%) of SRP. Other un-356 

dosed WwTWs might have different discharge concentrations, but there is no reason to 357 

believe that the proportion present as SRP should differ greatly, unless there are non-358 

domestic sources or other significant contaminants present. At the works employing 359 

aluminium dosing the effluent SRP concentration, determined over several days, was 360 

between 0.02 and 0.12mg P/l (though overall nearer to the upper part of this range). Total 361 
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phosphorus concentrations were in the range 0.3 to 0.6mg P/l. Apportionment of forms as a 362 

percentage of this total value were: uf SRP 65-75%, ufsettled SRP 45-55% and SRP 9-12%.  363 

 364 

A clear conclusion can be drawn here showing that dosing with iron or aluminium at WwTW 365 

employing a number of post-secondary treatments (nitrifying filters and BAFF in the case of 366 

WwTW B and tertiary sand filters in the case of WwTW E) reduces the total phosphorus 367 

concentration by a factor of 10 to 20, compared with an undosed works, which is not 368 

unexpected based on the chemistry involved (Galarneau and Gehr, 1997). Furthermore, 369 

dosing significantly reduces the proportion of SRP in the effluent, even as a fraction of the 370 

much diminished total, by 80-90% (assuming a non-dosed concentration of approximately 371 

5mgP/l). Both these conclusions are subject to the caveat that these findings relate only to this 372 

one WwTW (and therefore will need to be confirmed).  373 

 374 

The overall proportion of the key P species present in the effluent from an ecological impact 375 

point of view, namely SRP is provided in Figure 4.  376 

 377 

 378 

Figure 4.Mean percentage present as SRP (error bars show 90% confidence interval on 379 

the mean value) 380 

0

20

40

60

80

100

120

A B C D E

SR
P

 a
s 

a 
%

 o
f 

to
ta

l P

WwTW



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Results from the iron dosed treatment processes (WwTW C, D and E) suggest that whilst iron 381 

does indeed reduce the concentrations of total phosphorus and SRP from a notional 5-6 mg 382 

P/l to approximately 1 mg P/l or lower, the fraction of total phosphorus present as SRP in the 383 

final effluent is not definitively lower. For the ASP process (WwTWC) there was no 384 

significant difference between average SRP and TP concentrations; for the iron dosed 385 

biofilter the difference was larger but barely significant. However, for the double iron dosed 386 

tertiary filtered biofilter effluent the reduction in SRP was significant (SRP 26 ±17% of TP) 387 

but not as dramaticas that achieved by aluminium dosing. WwTW E did, however, exhibit the 388 

lowest TP and SRP concentrations of all of the WwTW sampled.The within WwTW 389 

processes impacting on phosphorus solubility, across primary, secondary and tertiary 390 

treatment will all effect final effluent quality and require further investigation. However, the 391 

focus of this research was on the effluent phosphorus speciation and how it relates to sample 392 

treatment and regulation. 393 

 394 

It is interesting to note that the tertiary filtration stage for WwTW E achieved a reduction 395 

from 0.7 to 0.2mg P/l, a reduction in SRP of a similar amount and a reduction in the 396 

proportion as SRP from 66±20% to 26±17%. It appears therefore that the effect of the further 397 

dosing and filtration stage is to remove a further 0.5mgP/l of SRP from the effluent. Hence 398 

further precipitation of SRP (and concurrent removal) appears to be occurring during tertiary 399 

sand filtration. This tertiary treatment stage therefore serves two purposes; it allows sufficient 400 

time for the dosed iron to react with residual SRP and then it removes the resulting particulate 401 

phosphorus. This is a potentially important observation. Tertiary filters appear not only allow 402 

more time for chemical reaction in the liquid phase, it is likely that under certain conditions 403 

chemical dosing can change the surface properties of the media, promoting further chemical 404 

adsorption of SRP. The degree of this mechanism may be influenced by the surface 405 

composition and properties of the media as well as properties of coagulant intermediate 406 

products as they reach the filter bed. The latter will be affected by dosing point, mixing and 407 

chemical property of the wastewater such as alkalinity and pH value (Xu et al., 2015). As 408 

noted above in relation to aluminium these findings require further confirmation before they 409 

can be accepted as more general phenomena. 410 

 411 

Previous findings for phosphorus removal mechanisms during wastewater treatment (Wu et 412 

al., 2015) have shown that for iron dosing, the split between the reaction to form mineral iron 413 

phosphate and coprecipitation onto iron oxyhydroxide minerals was about 50:50 and 414 
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accounted for 90% of the phosphorus speciation in material collected from a membrane 415 

bioreactor. There are little data available to compare the fraction of SRP in WwTW effluents. 416 

Previous unpublished Environment Agency monitoring data at a limited number of sites have 417 

suggested that the percentage of phosphorus present as SRP in iron dosed WwTWwas also 418 

low at around 16% (Comber et al., 2009) and the US Water Environment Research 419 

Foundation (WERF) have reported low SRP (µgP/l range) concentrations in dosed effluent 420 

(WERF, 2014).   421 

 422 

With respect to historical methodology, the practical value of unfiltered / settled unfiltered 423 

SRP is therefore highly questionable since it is not a reliable estimate of the two measures 424 

(TP, SRP) of phosphorus concentrations that form the basis of current regulation. It can only 425 

be assumed that at an earlier time when metal dosing of wastewaters was not widespread (and 426 

when in effluents SRP and TP were close in concentration) unfiltered so-called 427 

orthophosphate was a sufficiently accurate measure to meet monitoring requirements. This is 428 

emphatically no longer the case and the convenience of not filtering a sample is no longer an 429 

acceptable compromise.  430 

 431 

Consequently for future planning of measures to improve ecological quality within river 432 

systems, it is essential to take account of the speciation of phosphorus present in the water 433 

column, and in particular the most readily bioavailable form namely, SRP. Furthermore when 434 

modelling the possible outcome of applying iron or aluminium dosing for phosphorus 435 

reduction during the wastewater treatment process, SRP should be the phosphorus form used 436 

to ensure consistency with the water quality objectives set for receiving waters (Bowes et al., 437 

2010). Regulators across the developed world need to plan effective policy for phosphorus 438 

management, which will require monitoring and modelling in order to assess the consistency 439 

between striking the correct balance between point and diffuse sources ofphosphorus to 440 

ensure compliance and adherence to the „polluter pays‟ principle (Neal et al., 2005, 2008; 441 

Jarvie et al., 2006).   442 
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5. CONCLUSIONS  448 

The data generated from this research leads to a number of key conclusions regarding the 449 

monitoring, compliance assessment and possible future consenting of phosphorus discharged 450 

from WwTW: 451 

1) In order to generate data that are consistent and comparable between different 452 

sources, determination of SRP should always involve sample filtration to 0.45 µm. 453 

The results presented here provide confidence that the phosphorus speciation within 454 

an effluent sample is stable for up to 6 days storage at a temperature of <5°C.  455 

2) Data for phosphorus in effluents described as “orthophosphate” should be treated with 456 

caution because they may or may not reflect the phosphorus forms of interest. The 457 

difference between orthophosphate concentration and SRP might be as large as 80% 458 

of the value of the former. Orthophosphate, whilst still being of potential value in 459 

operational monitoring (e.g. examining trends or changes in operational performance), 460 

is therefore not considered a reliable metric in any regulatory context.  461 

3) Dosing with aluminium or iron was found to reduce the total phosphorus 462 

concentration in effluents by a factor of 5 to 10 fold, with additional tertiary treatment 463 

such as nitrifying filters, BAFFs and sand filtration serving to further reduce 464 

concentrations of TP and SRP in WwTW effluents (to less than 10% of TP), 465 

compared with straightforward secondary biological treatment coupled with metal salt 466 

dosing. Further trials are required to support these preliminary data, however, if 467 

confirmed, these marked differences between the forms of phosphoruspresent in 468 

effluents applying different treatment processes need to be taken into account when 469 

planning future effluent permitting policy.  470 

 471 

Acknowledgements 472 

The authors would like to thank UK Water Industry Research (UKWIR) for funding this 473 

research.  474 

 475 

 476 

 477 

 478 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 479 

REFERENCES 480 

Bowes M., Neal C., Jarvie H., Smith T. and Davies H. (2010) Science of the Total 481 

Environment 408 (2010) 4239–4250. 482 

 483 

Comber, S., Blackwood D., Gilmour D., Issacs J., Piekarniak L. (2009) Phosphorus Lifecycle 484 

Management (10/SL/02/9).UK Water Industry Research (UKWIR), 1 Queen Anne‟s Gate, 485 

London, UK. ISBN: 1 84057 570 0. 486 

 487 

EA (2012) Review of best practice in treatment and reuse/recycling of phosphorus at 488 

wastewater treatment works. Report no. SCHO0812BUSK-E-E.Environment Agency 489 

Horizon House, Deanery Road Bristol BS1 5AH. 490 

 491 

EU (2000) European Commission Directive 2000/60/EC of the European Parliament and of 492 

the Council of 23 October 2000 establishing a framework for Community action in the field 493 

of water policy. Accessed 23/05/2012 at  http://eur-494 

lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:EN:NOT 495 

 496 

Defra (2014) River Basin Planning Standards, May 2014, accessed May 2015: 497 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307788/river-498 

basin-planning-standards.pdf 499 

 500 

Defra (2002) Department for Environment, Food and Rural Affairs, Sewage Treatment in the 501 

UK: UK Implementation of the EC Urban Waste Water Treatment Directive.   502 

 503 

Defra (2015) Countryside Stewardship water capital grants: catchment sensitive farming. 504 

https://www.gov.uk/government/collections/countryside-stewardship-water-capital-grants-505 

catchment-sensitive-farming. 506 

 507 

EEA (2015) European Environment Agency, Waterbase - UWWTD: Urban Waste Water 508 

Treatment Directive – reported data, Data Created 15 Oct 2014 Published 27 Feb 2015 Last 509 

modified 06 May 2015, 06:56 PM. 510 

 511 

EEB (2010) 10 years of the Water Framework Directive: a toothless tiger? - A snapshot 512 

assessment of EU environmental ambitions. European Environmental Bureau, Federation of 513 

Environmental Citizens Organisations, Boulevard de Waterloo 34, B-1000 Brussels, 514 

Belgium. 515 

 516 

EU (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural 517 

habitats and of wild fauna and flora. 518 

 519 

EU (1991) Council Directive 91/271/EEC concerning urban waste-water treatment. 520 

 521 

Galarneau E. and Gehr R. (1997) Phosphorus removal from wastewaters:experimental and 522 

theoretical support foralternative mechanisms. Water Research, 31, 2, 328-338. 523 

 524 

Gardner, M.J., Comber, S.D.W., Scrimshaw, M.D., Cartmell, E., Lester, J, and Ellor, B. The 525 

Significance of Hazardous Chemicals in Wastewater Treatment Works Effluents. Sci. Total 526 

Environ. (2012), 437: 363-372. 527 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32000L0060:EN:NOT
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307788/river-basin-planning-standards.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307788/river-basin-planning-standards.pdf
https://www.gov.uk/government/collections/countryside-stewardship-water-capital-grants-catchment-sensitive-farming
https://www.gov.uk/government/collections/countryside-stewardship-water-capital-grants-catchment-sensitive-farming


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 528 

Haygarth, P.M., Warwick, M.S. and House, A.W.(1997)Size distribution of colloidal 529 

molybdate reactive phosphorus in river waters and soil solution. Wat, Res. Vol. 31, No. 3, pp. 530 

439-448. 531 

 532 

Hens, M. and  Merckx, R. (2002) The role of colloidal particles in the speciation and analysis 533 

of „„dissolved‟‟ phosphorus. Water Research 36 1483–1492. 534 

 535 

Hogan M.C. (2014) Water pollution. 536 

Retrieved from http://www.eoearth.org/view/article/156920. 537 

 538 

Houhou J., Lartiges B.S., Hofmann A., Frappier G., Ghanbaja J. and Temgoua A. (2009) 539 

Phosphate dynamics in an urban sewer: A case study of Nancy, France. Water Research, 540 

1088–1100. 541 

 542 

Jarvie H.P., Withers J.A. and Neal C. (2002) Review of robust measurement of phosphorus in 543 

river water: sampling, storage, fractionation and sensitivity. Hydrology and Earth System 544 

Sciences Discussions, Copernicus Publications, 6 (1), 113-131. 545 

 546 

Jarvie H.P., Whitton B.A. and  Neal C. (1998) Nitrogen and phosphorus in east coast British 547 

rivers: speciation, sources and biological significance. Science of the Total Environment 548 

210/211, 79-109. 549 

 550 

Jarvie H.P., Neal C. and Withers P.J.A. (2006) Sewage-effluent phosphorus: A greater risk to 551 

river eutrophication than agricultural phosphorus? Science of the Total Environment, 360, 552 

246– 253. 553 

 554 

Kelly, M.G., Adams C., Graves A.C., Jamieson J., Krokowski K., Lycett E.B., Murray Bligh 555 

J., Pritchard S. and Wilkins C. (2001) The Trophic Diatom Index. A User‟s Manual, R&D 556 

Report E2/TR2, ISBN: 1-857-05597-7. Environment Agency, Bristol, UK. 557 

 558 

McKelvie I.D., Peat D.M.W. and Worsfold P.J. (1995) Techniques for the quantification and 559 

speciation of phosphorus in natural waters. Analytical Proceedings Including Analytical 560 

Communications, 32, 437-445. 561 

 562 

Millier H.K.G.R and Hooda P.S. (2011) Phosphorus species and fractionation: Why sewage 563 

derived phosphorus is a problem. Journal of Environmental Management, 92, 1210-1214.  564 

 565 

Neal C., Jarvie H., Howarth S.M., Whitehead P., Williams R., Neal N., Harrow M. and 566 

Wickham H. (2000) The water quality of the River Kennet: initial observations on a lowland 567 

chalk stream impacted by sewage inputs and phosphorus remediation. The Science of the 568 

Total Environment, 251/252,  477-495. 569 

 570 

Neal C., Jarvie H., Love A., Neal M., Love A., Hill L., and Wickham H. (2005) Water quality 571 

of treated sewage effluent in a rural area of the upper Thames Basin, southern England, and 572 

the impacts of such effluents on riverine phosphorus concentrations. Journal of Hydrology, 573 

304, 103–117. 574 

 575 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Neal C., Jarvie H., Love A., Neal M., Harman S.,  and Wickham H. (2008) Water quality 576 

along a river continuum subject to point and diffuse sources. Journal of Hydrology, 350, 154– 577 

165. 578 

 579 

Neal C., Jarvie H., Williams R., Neal M., Love A., Harman S., Wickham H. and Armstrong 580 

L. (2010) Declines in phosphorus concentration in the upper River Thames (UK): Links to 581 

sewage effluent cleanup and extended end-member mixing analysis. Science of the Total 582 

Environment 408 (2010) 1315–1330. 583 

 584 

Omoike A.L. and Vanloon G.W. (1999) Removal of phosphorus and organic matter removal 585 

by alum during wastewater treatment.Wat. Res. Vol. 33, No. 17, pp. 3617-3627. 586 

 587 

Palmer-Felgate E.J., Jarvie H., Williams R., Mortimer R., Loewenthal M. and Neal C. (2008) 588 

Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. Journal 589 

of Hydrology, 351, 87– 97. 590 

 591 

Stutter M.I., Demars B.O.L and Langan S.J. (2010) River phosphorus cycling: Separating 592 

biotic and abiotic uptakeduring short-term changes in sewage effluent loading. water 593 

research, 44, 4425-4436. 594 

 595 

Jarvie H.P., Withers, P.A  and Neal, C. (2002) Review of robust measurement of phosphorus 596 

in river water: sampling, storage, fractionation and sensitivity Hydrology and Earth System 597 

Sciences 6. (1) 113 – 132.  598 

 599 

Murphy, J., and J.P. Riley.(1962). A modified single solution method for the determination of 600 

phosphate in natural waters.Anal.Chim.Acta 27:31-36. 601 

SCA (Standing Committee of Analysts) Method A - Her Majesty‟s Stationery Office (1992). 602 

Methods for the examination of waters and associated materials: phosphorus and silicon in 603 

waters, effluents and sludges. London: HMSO. 1992. 64 p ISBN 0117523771 604 

 605 

UKTAG (2006) UK Environmental Standards and Conditions, (Phase 1). Draft provided to 606 

groups and organisations for review and comment. (SR1 – 2006), January 2006. 607 

 608 

UKTAG (2012) A revised approach to setting Water Framework Directive phosphorus 609 

standards. UK Technical Advisory Group, October 2012.    610 

 611 

UKWIR (2012) Phosphorus Contributions from WwTW Discharges to Watercourses and 612 

their Long Term Impacts Relative to Other Sources (12/WW/20/5). ISBN:1 84057 652 9. 613 

UKWIR, London, UK. 614 

 615 

WERF (2014) Phosphorus fractionation and removal in wastewater treatment: implications 616 

for minimizing effluent phosphorus. Water Environment Research Foundation report 617 

NUTR1R061.  618 

 619 

WFD (2013) Updated Recommendations on Phosphorus Standards for Rivers, River Basin 620 

Management (2015-2021) Final Report. August 2013. 621 

 622 

Wu H., Ikeda-Ohno A., Wang Y. And Waite D. (2015) Iron and phosphorus speciation in Fe-623 

conditioned membrane bioreactor activated sludge. Water Research, 76, 213-226. 624 

 625 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Xu Y., Hu H., Liu J., Lou J., Qian G. and Wang A. (2015) pH dependent phosphorus release 626 

from waste activated sludge:contributions of phosphorus speciation. Chemical Engineering 627 

Journal, 267, 260-265.  628 


