819 research outputs found
Book Reviews
Reviews of the following books: Second Nature: An Environmental History of New England by Richard W. Judd; Hope and Fear in Margaret Chase Smith\u27s America: A Continuous Tangle by Gregory P. Gallant; The 2nd Maine Cavalry in the Civil War: A History and Roster by Ned Smith; Distilled in Maine: A History of Libations, Temperance and Craft Spirits by Kate McCarty; Bangor in World War II: From the Homefront to the Embattled Skies by David H. Bergquist; The Night the Sky Turned Red: The Story of the Great Portland Maine Fire of July 4th 1866, as told by Those Who Lived Through It by Allan M. Levinsk
ESRC/SFC Scoping Study into Quantitative Methods Capacity Building in Scotland
Final report for the following ITT: "The ESRC and the Funding Councils recognise that there is a growing body of evidence that highlights the need to develop quantitative skills amongst the social science population. In particular, this needs to take place during the earliest stages of career development, to ensure that there is a sufficient supply of quantitatively trained social science researchers entering the academic, public and voluntary sectors. To meet this need the ESRC is working with the Funding Councils to develop an integrated strategy which aims to improve the supply of quantitatively trained social scientists. To inform the development of this strategy the ESRC and SFC wish to commission a scoping study to identify the particular quantitative capacity building needs in Scotland. Tenders are currently being sought from individuals or teams interested in undertaking the study."There has been widespread concern about a UK-wide deficit in quantitative skills
amongst social scientists since the 1960s, especially in relation to the rapid pace of
change within the industry and the lack of adequately trained computing scientists.
• Despite experiencing a relatively industrious period in the late 1960s and 1970s,
Scotland’s provision of quantitative methods within social science is now
extremely patchy and as bad, if not worse, than that in the rest of the UK.
• Scotland has a similar demographic profile to the rest of the UK in terms of social
sciences; but Scottish Higher Educational Institutions (HEI) are under-represented
in other respects (e.g. representation at the Essex Summer School).
• In Scotland, disciplines such as Economics, Accountancy, Business Studies and
Psychology, which already have a quantitative reputation, have better resources
for assessment, training and improvement of mathematical, statistical and general
quantitative skills of their graduate students than other disciplines.
• Undergraduate courses are mainly focused around generic rather than specialised
quantitative methods teaching, although there is more specialist provision at
postgraduate level, but this again is centred around the ‘usual’ disciplines.
• Most teaching and research involves fairly general methods and statistical
techniques, although there are a few people experienced in more ‘advanced’
methods. There is a widespread need for continuing professional development
training in Scotland across all sectors, mainly at the more advanced level. There are a few, small-scale centres of expertise in Scotland, but most quantitative
researchers are spread across a range of institutions and disciplines. There are no
large-scale networks or centres, and this is viewed as key to building capacity.
• There are three general barriers to developing quantitative methods capacity in
Scotland. In order of importance, these are ‘antipathy’ (reluctance by students,
staff and HEI colleagues to engage with quantitative methods); ‘accessibility’
(availability of/time for training); and ‘enabling’ (lack of funding, collaborative
opportunities and data access).
• Scotland is a relatively ‘data rich’ country, with a proliferation in recent years of
Government funded surveys. However, self-reported usage of Scottish datasets is
low and there is a general failure to make the most of available data in Scotland.
• Computing and library support services are not well tuned to the needs of
quantitative capacity building. Basic levels of support, such as finding resources
on the web and offering assistance to access these, are provided; however,
students get little extensive user support or instruction in use of datasets and staff
do not get support for statistical consultancy or teaching data analysis skills in
computer labs. Greater communication and collaboration between support and
research staff is needed.
• There is support in Scotland for a long-term, strategic approach to building
capacity and there are good reasons for developing a specifically Scottish strategy.
• A national strategy must include a variety of activities at a range of different
levels, such as: boosting numeracy in secondary schools; better engagement with
both undergraduate and graduate students; strengthening links between academia
and potential employers; more training through continuing professional
development; and mentoring for early career researchers. Boosting capacity will require cultural and structural changes within many
institutions and disciplinary areas. Universities and funding bodies must provide
strategic investment in order to build a strong infrastructure capable of supporting
a critical mass of quantitative trained researchers in Scotland. The recommendations from this study include creating a Scottish Centre for
Social Science Research Methods and establishing a Scottish Summer School
Magnetar outbursts: an observational review
Transient outbursts from magnetars have shown to be a key property of their
emission, and one of the main way to discover new sources of this class. From
the discovery of the first transient event around 2003, we now count about a
dozen of outbursts, which increased the number of these strongly magnetic
neutron stars by a third in six years. Magnetar outbursts might involve their
multi-band emission resulting in an increased activity from radio to hard
X-ray, usually with a soft X-ray flux increasing by a factor of 10-1000 with
respect to the quiescent level. A connected X-ray spectral evolution is also
often observed, with a spectral softening during the outburst decay. The flux
decay times vary a lot from source to source, ranging from a few weeks to
several years, as also the decay law which can be exponential-like, a power-law
or even multiple power-laws can be required to model the flux decrease. We
review here on the latest observational results on the multi-band emission of
magnetars, and summarize one by one all the transient events which could be
studied to date from these sources.Comment: 34 pages, 6 figures. Chapter of the Springer Book ASSP 7395
"High-energy emission from pulsars and their systems", proceeding of the Sant
Cugat Forum on Astrophysics (12-16 April 2010). Review updated to January
201
Unveiling Soft Gamma-Ray Repeaters with INTEGRAL
Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest
Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and
studied in detail for the first time at hard-X/soft gamma rays.
This has produced a wealth of new scientific results, which we will review
here. Since SGR 1806-20 was particularly active during the last two years, more
than 300 short bursts have been observed with INTEGRAL. and their
characteristics have been studied with unprecedented sensitivity in the 15-200
keV range. A hardness-intensity anticorrelation within the bursts has been
discovered and the overall Number-Intensity distribution of the bursts has been
determined. In addition, a particularly active state, during which ~100 bursts
were emitted in ~10 minutes, has been observed on October 5 2004, indicating
that the source activity was rapidly increasing. This eventually led to the
Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80
keV) early afterglow has been detected.
The deep observations allowed us to discover the persistent emission in hard
X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in a quiescent
state, and to directly compare the spectral characteristics of all Magnetars
(two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.Comment: 8 pages, 7 figures, Presented at the conference "Isolated Neutron
Stars: from the Surface to the Interior", London, UK, 24-28 April 200
The response function of a sphere in a viscoelastic two-fluid medium
In order to address basic questions of importance to microrheology, we study
the dynamics of a rigid sphere embedded in a model viscoelastic medium
consisting of an elastic network permeated by a viscous fluid. We calculate the
complete response of a single bead in this medium to an external force and
compare the result to the commonly-accepted, generalized Stokes-Einstein
relation (GSER). We find that our response function is well approximated by the
GSER only within a particular frequency range determined by the material
parameters of both the bead and the network. We then discuss the relevance of
this result to recent experiments. Finally we discuss the approximations made
in our solution of the response function by comparing our results to the exact
solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure
Tomato: a crop species amenable to improvement by cellular and molecular methods
Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures.
In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
High frequency oscillations during magnetar flares
The recent discovery of high frequency oscillations during giant flares from
the Soft Gamma Repeaters SGR 1806-20 and SGR 1900+14 may be the first direct
detection of vibrations in a neutron star crust. If this interpretation is
correct it offers a novel means of testing the neutron star equation of state,
crustal breaking strain, and magnetic field configuration. We review the
observational data on the magnetar oscillations, including new timing analysis
of the SGR 1806-20 giant flare using data from the Ramaty High Energy Solar
Spectroscopic Imager (RHESSI) and the Rossi X-ray Timing Explorer (RXTE). We
discuss the implications for the study of neutron star structure and crust
thickness, and outline areas for future investigation.Comment: 5 pages, 1 figure, to appear in the proceedings of the conference
"Isolated Neutron Stars: from the Interior to the Surface" (April 2006,
London), eds. D. Page, R. Turolla, & S. Zane, Astrophysics & Space Science in
pres
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
The position of graptolites within Lower Palaeozoic planktic ecosystems.
An integrated approach has been used to assess the palaeoecology of graptolites both as a discrete group and also as a part of the biota present within Ordovician and Silurian planktic realms. Study of the functional morphology of graptolites and comparisons with recent ecological analogues demonstrates that graptolites most probably filled a variety of niches as primary consumers, with modes of life related to the colony morphotype. Graptolite coloniality was extremely ordered, lacking any close morphological analogues in Recent faunas. To obtain maximum functional efficiency, graptolites would have needed varying degrees of coordinated automobility. A change in lifestyle related to ontogenetic changes was prevalent within many graptolite groups. Differing lifestyle was reflected by differing reproductive strategies, with synrhabdosomes most likely being a method for rapid asexual reproduction. Direct evidence in the form of graptolithophage 'coprolitic' bodies, as well as indirect evidence in the form of probable defensive adaptations, indicate that graptolites comprised a food item for a variety of predators. Graptolites were also hosts to a variety of parasitic organisms and provided an important nutrient source for scavenging organisms
Computer modeling of diabetes and Its transparency: a report on the Eighth Mount Hood Challenge
Objectives
The Eighth Mount Hood Challenge (held in St. Gallen, Switzerland, in September 2016) evaluated the transparency of model input documentation from two published health economics studies and developed guidelines for improving transparency in the reporting of input data underlying model-based economic analyses in diabetes.
Methods
Participating modeling groups were asked to reproduce the results of two published studies using the input data described in those articles. Gaps in input data were filled with assumptions reported by the modeling groups. Goodness of fit between the results reported in the target studies and the groups’ replicated outputs was evaluated using the slope of linear regression line and the coefficient of determination (R2). After a general discussion of the results, a diabetes-specific checklist for the transparency of model input was developed.
Results
Seven groups participated in the transparency challenge. The reporting of key model input parameters in the two studies, including the baseline characteristics of simulated patients, treatment effect and treatment intensification threshold assumptions, treatment effect evolution, prediction of complications and costs data, was inadequately transparent (and often missing altogether). Not surprisingly, goodness of fit was better for the study that reported its input data with more transparency. To improve the transparency in diabetes modeling, the Diabetes Modeling Input Checklist listing the minimal input data required for reproducibility in most diabetes modeling applications was developed.
Conclusions
Transparency of diabetes model inputs is important to the reproducibility and credibility of simulation results. In the Eighth Mount Hood Challenge, the Diabetes Modeling Input Checklist was developed with the goal of improving the transparency of input data reporting and reproducibility of diabetes simulation model results
- …