247 research outputs found

    Estimating physical activity and sedentary behaviour in a free-living environment: A comparative study between Fitbit Charge 2 and Actigraph GT3X

    Get PDF
    Background: Activity trackers such as the Fitbit Charge 2 enable users and researchers to monitor physical activity in daily life, which could be beneficial for changing behaviour. However, the accuracy of the Fitbit Charge 2 in a free-living environment is largely unknown. Objective: To investigate the agreement between Fitbit Charge 2 and ActiGraph GT3X for the estimation of steps, energy expenditure, time in sedentary behaviour, and light and moderate-to-vigorous physical activity under free-living conditions, and further examine to what extent placing the ActiGraph on the wrist as opposed to the hip would affect the findings. Methods: 41 adults (n = 10 males, n = 31 females) were asked to wear a Fitbit Charge 2 device and two ActiGraph GT3X devices (one on the hip and one on the wrist) for seven consecutive days and fill out a log of wear times. Agreement was assessed through Bland-Altman plots combined with multilevel analysis. Results: The Fitbit measured 1,492 steps/day more than the hip-worn ActiGraph (limits of agreement [LoA] = -2,250; 5,234), while for sedentary time, it measured 25 min/day less (LoA = -137; 87). Both Bland-Altman plots showed fixed bias. For time in light physical activity, the Fitbit measured 59 min/day more (LoA = -52;169). For time in moderate-to-vigorous physical activity, the Fitbit measured 31 min/day less (LoA = -132; 71) and for activity energy expenditure it measured 408 kcal/day more than the hip-worn ActiGraph (LoA = -385; 1,200). For the two latter outputs, the plots indicated proportional bias. Similar or more pronounced discrepancies, mostly in opposite direction, appeared when comparing to the wrist-worn ActiGraph. Conclusion: Moderate to substantial differences between devices were found for most outputs, which could be due to differences in algorithms. Caution should be taken if replacing one device with another and when comparing results

    Prediction of Promiscuous P-Glycoprotein Inhibition Using a Novel Machine Learning Scheme

    Get PDF
    BACKGROUND: P-glycoprotein (P-gp) is an ATP-dependent membrane transporter that plays a pivotal role in eliminating xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR) is highly associated with the over-expression of P-gp by cells, resulting in increased efflux of chemotherapeutical agents and reduction of intracellular drug accumulation. It is of clinical importance to develop a P-gp inhibition predictive model in the process of drug discovery and development. METHODOLOGY/PRINCIPAL FINDINGS: An in silico model was derived to predict the inhibition of P-gp using the newly invented pharmacophore ensemble/support vector machine (PhE/SVM) scheme based on the data compiled from the literature. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those structurally diverse molecules in the training set (n = 31, r(2) = 0.89, q(2) = 0.86, RMSE = 0.40, s = 0.28), the test set (n = 88, r(2) = 0.87, RMSE = 0.39, s = 0.25) and the outlier set (n = 11, r(2) = 0.96, RMSE = 0.10, s = 0.05). The generated PhE/SVM model also showed high accuracy when subjected to those validation criteria generally adopted to gauge the predictivity of a theoretical model. CONCLUSIONS/SIGNIFICANCE: This accurate, fast and robust PhE/SVM model that can take into account the promiscuous nature of P-gp can be applied to predict the P-gp inhibition of structurally diverse compounds that otherwise cannot be done by any other methods in a high-throughput fashion to facilitate drug discovery and development by designing drug candidates with better metabolism profile

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    Get PDF
    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient

    Mitochondrionopathy Phenotype in Doxorubicin-Treated Wistar Rats Depends on Treatment Protocol and Is Cardiac-Specific

    Get PDF
    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations

    The weight-loss experience : qualitative exploration

    Get PDF
    BACKGROUND: Long-term weight management consists of weight-loss, weight-loss maintenance, and weight-gain stages. Qualitative insights into weight management are now appearing in the literature however research appears to be biased towards explorations of weight-loss maintenance. The qualitative understanding of weight loss, which begets weight-loss maintenance and might establish the experiences and behaviours necessary for successful long-term weight management, is comparatively under-investigated. The aim of this study was to investigate the weight-loss experiences of a sample of participants not aligned to clinical intervention research, in order to understand the weight-loss experiences of a naturalistic sample. METHODS: Participants (n=8) with weight-loss (n=4) and weight-maintenance experiences (n=4) were interviewed using a semi-structured interview to understand the weight-loss experience. Interview data was analysed thematically using Framework Analysis and was underpinned by realist meta-theory. RESULTS: Weight loss was experienced as an enduring challenge, where factors that assisted weight loss were developed and experienced dichotomously to factors that hindered it. Participants described barriers to (dichotomous thinking, environments, social pressures and weight centeredness) and facilitators of (mindfulness, knowledge, exercise, readiness to change, structure, self-monitoring and social support) their weight-loss goals in rich detail, highlighting that weight loss was a complex experience. CONCLUSIONS: Weight loss was a difficult task, with physical, social, behavioural and environmental that appeared to assist and inhibit weight-loss efforts concurrently. Health professionals might need to better understand the day-to-day challenges of dieters in order to provide more effective, tailored treatments. Future research should look to investigate the psycho-social consequences of weight-loss dieting, in particular self-imposed social exclusion and spousal sabotage and flexible approaches to treatment

    Differential immunoglobulin and complement levels in leprosy prior to development of reversal reaction and erythema nodosum leprosum

    Get PDF
    Background Leprosy is a treatable infectious disease caused by Mycobacterium leprae. However, there is additional morbidity from leprosy-associated pathologic immune reactions, reversal reaction (RR) and erythema nodosum leprosum (ENL), which occur in 1 in 3 people with leprosy, even with effective treatment of M. leprae. There is currently no predictive marker in use to indicate which people with leprosy will develop these debilitating immune reactions. Our peripheral blood mononuclear cell (PBMC) transcriptome analysis revealed that activation of the classical complement pathway is common to both RR and ENL. Additionally, differential expression of immunoglobulin receptors and B cell receptors during RR and ENL support a role for the antibody-mediated immune response during both RR and ENL. In this study, we investigated B-cell immunophenotypes, total and M. leprae-specific antibodies, and complement levels in leprosy patients with and without RR or ENL. The objective was to determine the role of these immune mediators in pathogenesis and assess their potential as biomarkers of risk for immune reactions in people with leprosy. Methodology/findings We followed newly diagnosed multibacillary leprosy cases (n = 96) for two years for development of RR or ENL. They were compared with active RR (n = 35), active ENL (n = 29), and healthy household contacts (n = 14). People with leprosy who subsequently developed ENL had increased IgM, IgG1, and C3d-associated immune complexes with decreased complement 4 (C4) at leprosy diagnosis. People who developed RR also had decreased C4 at leprosy diagnosis. Additionally, elevated anti-M. leprae antibody levels were associated with subsequent RR or ENL. Conclusions Differential co-receptor expression and immunoglobulin levels before and during immune reactions intimate a central role for humoral immunity in RR and ENL. Decreased C4 and elevated anti-M. leprae antibodies in people with new diagnosis of leprosy may be risk factors for subsequent development of leprosy immune reactions
    corecore