12 research outputs found

    Benthic communities of the lower mesophotic zone on One Tree shelf edge, southern Great Barrier Reef, Australia

    Get PDF
    Context: Increasing interest in mesophotic coral ecosystems has shown that reefs in deep water show considerable geomorphic and ecological variability among geographic regions. Aims: We provide the first investigation of mesophotic reefs at the southern extremity of the Great Barrier Reef (GBR) to understand the biotic gradients and habitat niches in the lower mesophotic zone. Methods: Multibeam data were used to target five benthic imagery transects collected in the lower mesophotic (80–130 m) zone from the shelf edge near One Tree Island (23°S, 152°E) by using a single HD-SDI subsea camera. Key results: Transects supported similar benthic communities in depths of 80–110 m, with the abundance of sessile benthos declining below ~110 m where the shelf break grades into the upper continental slope. Conclusions: The effect of the Capricorn Eddy may be promoting homogeneity of benthic assemblages, because it provides similar environmental conditions and potential for connectivity. Variation in benthic communities between hard and soft substrate and differing topographic relief within the study site are likely to be influenced by variation in sedimentation, including sensitivity to suspended particles. Implications: This study highlighted that the lower mesophotic region on the One Tree shelf edge supports mesophotic coral ecosystems that vary depending on depth and substrate

    The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO_2 since the Devonian

    Get PDF
    The CO_2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO_2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO_2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and carbonate platforms. This study investigates the contribution of carbonate-intersecting subduction zones (CISZs) to palaeo-atmospheric CO_2 levels over the past 410 million years by integrating a plate motion and plate boundary evolution model with carbonate platform development through time. Our model of carbonate platform development has the potential to capture a broader range of degassing mechanisms than approaches that only account for continental arcs. Continuous and cross-wavelet analyses as well as wavelet coherence are used to evaluate trends between the evolving lengths of carbonate-intersecting subduction zones, non-carbonate-intersecting subduction zones and global subduction zones, and are examined for periodic, linked behaviour with the proxy CO_2 record between 410 Ma and the present. Wavelet analysis reveals significant linked periodic behaviour between 60 and 40 Ma, when CISZ lengths are relatively high and are correlated with peaks in palaeo-atmospheric CO_2, characterised by a 32–48 Myr periodicity and a  ∼  8–12 Myr lag of CO_2 peaks following CISZ length peaks. The linked behaviour suggests that the relative abundance of CISZs played a role in affecting global climate during the Palaeogene. In the 200–100 Ma period, peaks in CISZ lengths align with peaks in palaeo-atmospheric CO_2, but CISZ lengths alone cannot be determined as the cause of a warmer Cretaceous–Jurassic climate. Nevertheless, across the majority of the Phanerozoic, feedback mechanisms between the geosphere, atmosphere and biosphere likely played dominant roles in modulating climate. Our modelled subduction zone lengths and carbonate-intersecting subduction zone lengths approximate magmatic activity through time, and can be used as input into fully coupled models of CO_2 flux between deep and shallow carbon reservoirs

    A diverse view of science to catalyse change

    Get PDF
    Valuing diversity leads to scientific excellence, the progress of science and, most importantly, it is simply the right thing to do. We must value diversity not only in words, but also in actions

    DCO-Modelling-of-Deep-Time-Atmospheric-Carbon-Flux-from-Subduction-Zone-Interactions: Initial Release

    No full text
    <p>EarthByte DCO-commissioned project, Spatio-temporal modelling of deep time atmospheric carbon flux from subduction zone interactions, specifically addresses this goal by using plate reconstructions and cutting-edge, open-source community frameworks to communicate mantle-curst-atmosphere interactions in the deep carbon cycle. For more information visit the EarthByte blog: http://www.earthbyte.org/deep-carbon-modelling-and-visualisation-project/</p> <p><br> For any issues or bugs found in the workflow, please submit an 'issue' at the git repository website: https://github.com/slhdoss/DCO-Modelling-of-Deep-Time-Atmospheric-Carbon-Flux-from-Subduction-Zone-Interactions</p
    corecore