283 research outputs found

    A reliable protocol for the stable transformation of non-embryogenic cells cultures of grapevine (Vitis vinifera L.) and Taxus x media

    Get PDF
    One of the major intent of metabolic engineering in cell culture systems is to increase yields of secondary metabolites. Efficient transformation methods are a priority to successfully apply metabolic engineering to cell cultures of plants that produce bioactive or therapeutic compounds, such as Vitis vinifera and Taxus x media. The aim of this study was to establish a reliable method to transform non-embryogenic cell cultures of these species. The V. vinifera cv. Gamay/cv. Monastrell cell lines and Taxus x media were used for Agrobacterium-mediated transformation using the Gateway-compatible Agrobacterium sp. binary vector system for fast reliable DNA cloning. The Taxus x media and Vitis cell lines were maintained in culture for more than 4 and 15 months, respectively, with no loss of reporter gene expression or antibiotic resistance. The introduced genes had no discernible effect on cell growth, or led to extracellular accumulation of phytoalexin trans-Resveratrol (t-R) in response to elicitation with methylated cyclodextrins (MBCD) and methyl jasmonate (MeJA) in the grapevine transgenic cell lines compared to the parental control. The method described herein provides an excellent tool to exploit exponentially growing genomic resources to enhance, optimize or diversify the production of bioactive compounds generated by grapevine and yew cell cultures, and offers a better understanding of many grapevine and yew biology areas.This work has been supported by grants from the Spanish Ministry of Science and Innovation (BIO2011-29856-C02-01, BIO2011-29856-C02-02 and BIO2014-51861-R), European Funds for Regional Development (FEDER) and Conselleria d’Educacio, Cultura i Sport de la Generalitat Valenciana (FPA/2013/A/074). J.M.C. holds a postdoctoral grant from SENESCYT-GOVERNMENT OF ECUADOR (006-IECESMG5-GPLR-2012)

    In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals

    Get PDF
    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms

    Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated in Situ Cation Exchange

    Get PDF
    Among the different synthesis approaches to colloidal nanocrystals, a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, postsynthetic treatments, such as thermally activated solid-state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se or Cu nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptor” phases represented by rod- and wire-shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2−xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other; hence, the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state and helps to shed light on the intermediate steps involved in such reactions

    Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates

    Get PDF
    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector–mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell–mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector

    Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation

    Get PDF
    BACKGROUND: Interleukin-8 (IL-8, CXCL8) is readily produced by human malignant cells. Dendritic cells (DC) both produce IL-8 and express the IL-8 functional receptors CXCR1 and CXCR2. Most human colon carcinomas produce IL-8. IL-8 importance in malignancies has been ascribed to angiogenesis promotion. PRINCIPAL FINDINGS: IL-8 effects on human monocyte-derived DC biology were explored upon DC exposure to recombinant IL-8 and with the help of an IL-8 neutralizing mAb. In vivo experiments were performed in immunodeficient mice xenografted with IL-8-producing human colon carcinomas and comparatively with cell lines that do not produce IL-8. Allogenic T lymphocyte stimulation by DC was explored under the influence of IL-8. DC and neutrophil chemotaxis were measured by transwell-migration assays. Sera from tumor-xenografted mice contained increasing concentrations of IL-8 as the tumors progress. IL-8 production by carcinoma cells can be modulated by low doses of cyclophosphamide at the transcription level. If human DC are injected into HT29 or CaCo2 xenografted tumors, DC are retained intratumorally in an IL-8-dependent fashion. However, IL-8 did not modify the ability of DC to stimulate T cells. Interestingly, pre-exposure of DC to IL-8 desensitizes such cells for IL-8-mediated in vitro or in vivo chemoattraction. Thereby DC become disoriented to subsequently follow IL-8 chemotactic gradients towards malignant or inflamed tissue. CONCLUSIONS: IL-8 as produced by carcinoma cells changes DC migration cues, without directly interfering with DC-mediated T-cell stimulation

    The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Get PDF
    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia

    Modelling pulmonary microthrombosis coupled to metastasis: distinct effects of thrombogenesis on tumorigenesis

    Get PDF
    Thrombosis can cause localized ischemia and tissue hypoxia, and both of these are linked to cancer metastasis. Vascular micro-occlusion can occur as a result of arrest of circulating tumour cells in small capillaries, giving rise to microthrombotic events that affect flow, creating localized hypoxic regions. To better understand the association between metastasis and thrombotic events, we generated an experimental strategy whereby we modelled the effect of microvascular occlusion in metastatic efficiency by using inert microbeads to obstruct lung microvasculature before, during and after intravenous tumour cell injection. We found that controlled induction of a specific number of these microthrombotic insults in the lungs caused an increase in expression of the hypoxia-inducible transcription factors (HIFs), a pro-angiogenic and pro-tumorigenic environment, as well as an increase in myeloid cell infiltration. Induction of pulmonary microthrombosis prior to introduction of tumour cells to the lungs had no effect on tumorigenic success, but thrombosis at the time of tumour cell seeding increased number and size of tumours in the lung, and this effect was strikingly more pronounced when the micro-occlusion occurred on the day following introduction of tumour cells. The tumorigenic effect of microbead treatment was seen even when thrombosis was induced five days after tumour cell injection. We also found positive correlations between thrombotic factors and expression of HIF2α\alpha in human tumours. The model system described here demonstrates the importance of thrombotic insult in metastatic success and can be used to improve understanding of thrombosis-associated tumorigenesis and its treatment.Research was supported through a Wellcome Trust Principal Research Fellowship to R.S.J. (RG59596). C.B. is supported through a Scientific Fellowship from Breast Cancer Now (2014MaySF275). C.E.E. received a Pump-Priming Grant from the University of Cambridge British Heart Foundation Centre of Research Excellence (RG68639)

    A standardized comparison of commercially available prion decontamination reagents using the Standard Steel-Binding Assay

    Get PDF
    Prions are comprised principally of aggregates of a misfolded host protein and cause fatal transmissible neurodegenerative disorders of mammals, such as variant Creutzfeldt–Jakob disease in humans and bovine spongiform encephalopathy in cattle. Prions pose significant public health concerns through contamination of blood products and surgical instruments, and can resist conventional hospital sterilization methods. Prion infectivity binds avidly to surgical steel and can efficiently transfer infectivity to a suitable host, and much research has been performed to achieve effective prion decontamination of metal surfaces. Here, we exploit the highly sensitive Standard Steel-Binding Assay (SSBA) to perform a direct comparison of a variety of commercially available decontamination reagents marketed for the removal of prions, alongside conventional sterilization methods. We demonstrate that the efficacy of marketed prion decontamination reagents is highly variable and that the SSBA is able to rapidly evaluate current and future decontamination reagents

    Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death

    Get PDF
    BACKGROUND: We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS: We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS: We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION: Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING: European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR)
    corecore