Journal of Biological Methods (JBM)
Not a member yet
163 research outputs found
Sort by
An experimental method for evoking and characterizing dynamic color patterning of cuttlefish during prey capture
Cuttlefish are active carnivores that possess a wide repertoire of body patterns that can be changed within milliseconds for many types of camouflage and communication. The forms and functions of many body patterns are well known from ethological studies in the field and laboratory. Yet one aspect has not been reported in detail: the category of rapid, brief and high-contrast changes in body coloration (“Tentacle Shot Patterns” or TSPs) that always occur with the ejection of two ballistic tentacles to strike live moving prey (“Tentacles Go Ballistic” or TGB moment). We designed and tested a mechanical device that presented prey in a controlled manner, taking advantage of a key stimulus for feeding: motion of the prey. High-speed video recordings show a rapid transition into TSPs starting 114 ms before TGB (N = 114). TSPs are then suppressed as early as 470–500 ms after TGB (P < 0.05) in unsuccessful hunts, while persisting for at least 3 s after TGB in successful hunts. A granularity analysis revealed significant differences in the large-scale high-contrast body patterning present in TSPs compared to the camouflage body pattern deployed beforehand. TSPs best fit the category of secondary defense called deimatic displaying, meant to briefly startle predators and interrupt their attack sequence while cuttlefish are distracted by striking prey. We characterize TSPs as a pattern category for which the main distinguishing feature is a high-contrast signaling pattern with aspects of Acute Conflict Mottle or Acute Disruptive Pattern. The data and methodology presented here open opportunities for quantifying the rapid neural responses in this visual sensorimotor set of behaviors
Methodology for measuring oxidative capacity of isolated peroxisomes in the Seahorse assay
The regulation of cellular energetics is a complex process that requires the coordinated function of multiple organelles. Historically, studies focused on understanding cellular energy utilization and production have been overwhelmingly concentrated on the mitochondria. While mitochondria account for the majority of intracellular energy production, they alone are incapable of maintaining the variable energetic demands of the cell. The peroxisome has recently emerged as a secondary metabolic organelle that complements and improves mitochondrial performance. Although mitochondria and peroxisomes are structurally distinct organelles, they share key functional similarities that allows for the potential to repurpose readily available tools initially developed for mitochondrial assessment to interrogate peroxisomal metabolic function in a novel manner. To this end, we report here on procedures for the isolation, purification and real-time metabolic assessment of peroxisomal β-oxidation using the Agilent Seahorse® system. When used together, these protocols provide a straightforward, reproducible and highly quantifiable method for measuring the contributions of peroxisomes to cellular and organismal metabolism
Development of a reproducible porcine model of infected burn wounds
Severe burns are traumatic and physically debilitating injuries with a high rate of mortality. Bacterial infections often complicate burn injuries, which presents unique challenges for wound management and improved patient outcomes. Currently, pigs are used as the gold standard of pre-clinical models to study infected skin wounds due to the similarity between porcine and human skin in terms of structure and immunological response. However, utilizing this large animal model for wound infection studies can be technically challenging and create issues with data reproducibility. We present a detailed protocol for a porcine model of infected burn wounds based on our experience in creating and evaluating full thickness burn wounds infected with Staphylococcus aureus on six pigs. Wound healing kinetics and bacterial clearance were measured over a period of 27 d in this model. Enumerated are steps to achieve standardized wound creation, bacterial inoculation, and dressing techniques. Systematic evaluation of wound healing and bacterial colonization of the wound bed is also described. Finally, advice on animal housing considerations, efficient bacterial plating procedures, and overcoming common technical challenges is provided. This protocol aims to provide investigators with a step-by-step guide to execute a technically challenging porcine wound infection model in a reproducible manner. Accordingly, this would allow for the design and evaluation of more effective burn infection therapies leading to better strategies for patient care
Site-specific nanobody-oligonucleotide conjugation for super-resolution imaging
Camelid single-domain antibody fragments, also called nanobodies, constitute a class of binders that are small in size (~15 kDa) and possess antigen-binding properties similar to their antibody counterparts. Facile production of recombinant nanobodies in several microorganisms has made this class of binders attractive within the field of molecular imaging. Particularly, their use in super-resolution microscopy has improved the spatial resolution of molecular targets due to a smaller linkage error. In single-molecule localization microscopy techniques, the effective spatial resolution can be further enhanced by site-specific fluorescent labeling of nanobodies owing to a more homogeneous protein-to-fluorophore stoichiometry, reduced background staining and a known distance between dye and epitope. Here, we present a protocol for site-specific bioconjugation of DNA oligonucleotides to three distinct nanobodies expressed with an N- or C-terminal unnatural amino acid, 4-azido-L-phenylalanine (pAzF). Using copper-free click chemistry, the nanobody-oligonucleotide conjugation reactions were efficient and yielded highly pure bioconjugates. Target binding was retained in the bioconjugates, as demonstrated by bio-layer interferometry binding assays and the super-resolution microscopy technique, DNA points accumulation for imaging in nanoscale topography (PAINT). This method for site-specific protein-oligonucleotide conjugation can be further extended for applications within drug delivery and molecular targeting where site-specificity and stoichiometric control are required
High throughput nanopore sequencing of SARS-CoV-2 viral genomes from patient samples
In late 2019, a novel coronavirus began spreading in Wuhan, China, causing a potentially lethal respiratory viral infection. By early 2020, the novel coronavirus, called SARS-CoV-2, had spread globally, causing the COVID-19 pandemic. The infection and mutation rates of SARS-CoV-2 make it amenable to tracking introduction, spread and evolution by viral genome sequencing. Efforts to develop effective public health policies, therapeutics, or vaccines to treat or prevent COVID-19 are also expected to benefit from tracking mutations of the SARS-CoV-2 virus. Here we describe a set of comprehensive working protocols, from viral RNA extraction to analysis using established visualization tools, for high throughput sequencing of SARS-CoV-2 viral genomes using a MinION instrument. This set of protocols should serve as a reliable "how-to" reference for generating quality SARS-CoV-2 genome sequences with ARTIC primer sets and long-read nanopore sequencing technology. In addition, many of the preparation, quality control, and analysis steps will be generally applicable to other sequencing platforms
Getting two birds with one stone: Combining immunohistochemistry and Azan staining in animal morphology
Classical histological stained sections have the disadvantage that fine structures, like individual neurites, or specific macromolecules, like neurotransmitters cannot be visualized. Due to its highly specific staining of only one target molecule within the cell, the visualization of delicate structures, which would be superimposed by other tissue layers in classical Azan staining, is possible with immunohistochemistry. However, using immunohistological methods not all tissues of a specimen can be visualized at once. In contrast, density specific stains like Azan allow for a whole staining of the tissues. We provide a step by step protocol of how to combine immunohistochemistry and Azan staining in the same serial paraffin sections. The combination of both methods allows for a highly detailed investigation of structures of interest. The spatial detection of the previous, to Azan staining, gained antibody-labeled signal allows for a much better understanding of animal organ systems. By using serial sections, it is possible to create an aligned image stack that is both Azan stained and also antibody-labeled. Thus enabling a correlative approach that bridges traditional histology with immunohistochemistry in animal morphology
A method for the efficient iron-labeling of patient-derived xenograft cells and cellular imaging validation
There is momentum towards implementing patient-derived xenograft models (PDX) in cancer research to reflect the histopathology, tumor behavior, and metastatic properties observed in the original tumor. These models are more predictive of clinical outcomes and are superior to cell lines for preclinical drug evaluation and therapeutic strategies. To study PDX cells preclinically, we used both bioluminescence imaging (BLI) to evaluate cell viability and magnetic particle imaging (MPI), an emerging imaging technology to allow for detection and quantification of iron nanoparticles. The goal of this study was to develop the first successful iron labeling method of breast cancer cells derived from patient brain metastases and validate this method with imaging during tumor development. Luciferase expressing human breast cancer PDX cells (F2-7) were successfully labeled after incubation with micron-sized iron oxide particles (MPIO; 25 μg Fe/ml). NOD/SCID/ILIIrg−/− (n = 5) mice received injections of 1x106 iron-labeled F2-7 cells into the fourth mammary fat pad (MFP). BLI was performed longitudinally to day 49 and MPI was performed up to day 28. In vivo BLI revealed that signal increased over time with tumor development. MPI revealed decreasing signal in the tumor over time. Here, we demonstrate the first application of MPI to monitor the growth of a PDX MFP tumor. To accomplish this, we also demonstrate the first successful labeling of PDX cells with iron oxide particles. Imaging of PDX cells provides a powerful system to better develop personalized therapies targeting breast cancer brain metastasis
Virtual screening on the web for drug repurposing: a primer
We describe a procedure of performing in silico (virtual) screening using a web-based service, the MTiOpenScreen, whichis freely accessible to non-commercial users. We shall use the SARS-CoV-2 main protease as an example. Starting from a structure downloaded from the Protein Data Bank, we discuss how to prepare the coordinates file, taking into account the known biochemical background information of the target protein. The reader will find that this preparation step takes up most of the effort before the target is ready for screening. The steps for uploading the target structure and defining the search volume by critical residues, and the main parameters to use, are outlined. When this protocol is followed, the user will expect to obtain a ranked list of small approved drug compounds docked into the target structure. The results can be readily examined graphically on the web site or downloaded for studying in a local molecular graphics program such as PyMOL
Special issue editorial: Methods to facilitate SARS-CoV-2 and COVID-19 research
This special issue of Journal of Biological Methods presents methods related to SARS- CoV-2 research in responding to the current global COVID-19 pandemic
Visualization of subdiffusive sites in a live single cell
We measured anomalous diffusion in human prostate cancer cells which were transfected with the Alexa633 fluorescent RNA probe and co-transfected with enhanced green fluorescent protein-labeled argonaute2 protein by laser scanning microscopy. The image analysis arose from diffusion based on a “two-level system”. A trap was an interaction site where the diffusive motion was slowed down. Anomalous subdiffusive spreading occurred at cellular traps. The cellular traps were not immobile. We showed how the novel analysis method of imaging data resulted in new information about the number of traps in the crowded and heterogeneous environment of a single human prostate cancer cell. The imaging data were consistent with and explained by our modern ideas of anomalous diffusion of mixed origins in live cells. Our original research presented in this study is significant as we obtained a complex diffusion mechanism in live single cells