29 research outputs found

    The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast

    Get PDF
    In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites

    Design of a minimal silencer for the silent mating-type locus HML of Saccharomyces cerevisiae

    Get PDF
    The silent mating-type loci HML and HMR of Saccharomyces cerevisiae contain mating-type information that is permanently repressed. This silencing is mediated by flanking sequence elements, the E- and I-silencers. They contain combinations of binding sites for the proteins Rap1, Abf1 and Sum1 as well as for the origin recognition complex (ORC). Together, they recruit other silencing factors, foremost the repressive Sir2/Sir3/Sir4 complex, to establish heterochromatin-like structures at the HM loci. However, the HM silencers exhibit considerable functional redundancy, which has hampered the identification of further silencing factors. In this study, we constructed a synthetic HML-E silencer (HML-SS ΔI) that lacked this redundancy. It consisted solely of Rap1 and ORC-binding sites and the D2 element, a Sum1-binding site. All three elements were crucial for minimal HML silencing, and mutations in these elements led to a loss of Sir3 recruitment. The silencer was sensitive to a mutation in RAP1, rap1-12, but less sensitive to orc mutations or sum1Δ. Moreover, deletions of SIR1 and DOT1 lead to complete derepression of the HML-SS ΔI silencer. This fully functional, minimal HML-E silencer will therefore be useful to identify novel factors involved in HML silencing

    The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication

    Get PDF
    The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism

    A role for a replicator dominance mechanism in silencing.

    No full text
    The role of the natural HMR-E silencer in modulating replication initiation and silencing by the origin recognition complex (ORC) was examined. When natural HMR-E was the only silencer controlling HMR, the silencer's ORC-binding site (ACS) was dispensable for replication initiation but essential for silencing, indicating that a non-silencer chromosomal replicator(s) existed in close proximity to the silencer. Further analysis revealed that regions flanking both sides of HMR-E contained replicators. In contrast to replication initiation by the intact silencer, initiation by the non-silencer replicator(s) was abolished in an orc2-1 mutant, indicating that these replicators were extremely sensitive to defects in ORC. Remarkably, the activity of one of the non-silencer replicators correlated with reduced silencing; inactivation of these replicators caused by either the orc2-1 mutation or the deletion of flanking sequences enhanced silencing. These data were consistent with a role for the ORC bound to the HMR-E silencer ACS in suppressing the function of neighboring ORC molecules capable of inhibiting silencing, and indicated that differences in ORC-binding sites within HMR itself had profound effects on ORC function. Moreover, replication initiation by natural HMR-E was inefficient, suggesting that closely spaced replicators within HMR contributed to an inhibition of replication initiation

    Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin

    No full text
    The origin recognition complex (ORC) marks chromosomal positions as replication origins and is essential for replication initiation. At a few loci, the ORC functions in heterochromatin formation. We show that the ORC's two roles at the heterochromatic HMRa locus in Saccharomyces cerevisiae were regulated by differences in the ORC's interaction with its target site. At HMRa, a strong ORC-DNA interaction inhibited and delayed replication initiation but promoted heterochromatin formation, whereas a weak ORC-DNA interaction allowed for increased and earlier replication initiation but reduced heterochromatin formation. Therefore, the ORC's interaction with its target site could modulate ORC activity within a heterochromatin domain in vivo

    Mathematical modelling of whole chromosome replication

    Get PDF
    All chromosomes must be completely replicated prior to cell division, a requirement that demands the activation of a sufficient number of appropriately distributed DNA replication origins. Here we investigate how the activity of multiple origins on each chromosome is coordinated to ensure successful replication. We present a stochastic model for whole chromosome replication where the dynamics are based upon the parameters of individual origins. Using this model we demonstrate that mean replication time at any given chromosome position is determined collectively by the parameters of all origins. Combining parameter estimation with extensive simulations we show that there is a range of model parameters consistent with mean replication data, emphasising the need for caution in interpreting such data. In contrast, the replicated-fraction at time points through S phase contains more information than mean replication time data and allowed us to use our model to uniquely estimate many origin parameters. These estimated parameters enable us to make a number of predictions that showed agreement with independent experimental data, confirming that our model has predictive power. In summary, we demonstrate that a stochastic model can recapitulate experimental observations, including those that might be interpreted as deterministic such as ordered origin activation times
    corecore