3,078 research outputs found

    Simulation Application for the LHCb Experiment

    Full text link
    We describe the LHCb detector simulation application (Gauss) based on the Geant4 toolkit. The application is built using the Gaudi software framework, which is used for all event-processing applications in the LHCb experiment. The existence of an underlying framework allows several common basic services such as persistency, interactivity, as well as detector geometry description or particle data to be shared between simulation, reconstruction and analysis applications. The main benefits of such common services are coherence between different event-processing stages as well as reduced development effort. The interfacing to Geant4 toolkit is realized through a facade (GiGa) which minimizes the coupling to the simulation engine and provides a set of abstract interfaces for configuration and event-by-event communication. The Gauss application is composed of three main blocks, i.e. event generation, detector response simulation and digitization which reflect the different stages performed during the simulation job. We describe the overall design as well as the details of Gauss application with a special emphasis on the configuration and control of the underlying simulation engine. We also briefly mention the validation strategy and the planing for the LHCb experiment simulation.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 9 eps figures. PSN TUMT00

    Surface abundances of ON stars

    Get PDF
    Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Hence, mass transfer is not a simple explanation for the observed chemical properties. We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present.Comment: 18 pages, 10 figures (+ appendix). A&A accepte

    Long time universality of black-hole lasers

    Get PDF
    For flowing quantum gases, it has been found that at long times an initial black-hole laser (BHL) configuration exhibits only two possible states: the ground state or a periodic self-oscillating state of continuous emission of solitons. So far, all the works on this subject are based on a highly idealized model, quite difficult to implement experimentally. Here we study the instability spectrum and the time evolution of a recently proposed realistic model of a BHL, thus providing a useful theoretical tool for the clear identification of black-hole lasing in future experiments. We further confirm the existence of a well-defined phase diagram at long times, which bespeaks universality in the long-time behavior of a BHL. Additionally, we develop a complementary model in which the same potential profile is applied to a subsonic homogeneous flowing condensate that, despite not forming a BHL, evolves towards the same phase diagram as the associated BHL model. This result reveals an even stronger form of robustness in the long-time behavior with respect to the transient, which goes beyond what has been described in the previous literature.Comment: 14 pages, 8 figures. Final version of the manuscrip

    Nonlinear response of single-molecule nanomagnets: equilibrium and dynamical

    Full text link
    We present an experimental study of the {\em nonlinear} susceptibility of Mn12_{12} single-molecule magnets. We investigate both their thermal-equilibrium and dynamical nonlinear responses. The equilibrium results show the sensitivity of the nonlinear susceptibility to the magnetic anisotropy, which is nearly absent in the linear response for axes distributed at random. The nonlinear dynamic response of Mn12_{12} was recently found to be very large and displaying peaks reversed with respect to classical superparamagnets [F. Luis {\em et al.}, Phys. Rev. Lett. {\bf 92}, 107201 (2004)]. Here we corroborate the proposed explanation -- strong field dependence of the relaxation rate due to the detuning of tunnel energy levels. This is done by studying the orientational dependence of the nonlinear susceptibility, which permits to isolate the quantum detuning contribution. Besides, from the analysis of the longitudinal and transverse contributions we estimate a bound for the decoherence time due to the coupling to the phonon bath.Comment: 13 pages, 8 figures, resubmitted to Phys. Rev. B with minor change

    Conidios en la atmósfera de la ciudad de Mérida

    Get PDF
    XV lnternational A.P.L.E. Symposium of Palynolog

    Crystal defects and spin tunneling in single crystals of Mn12 clusters

    Full text link
    The question addressed in this paper is that of the influence of the density of dislocations on the spin tunneling in Mn12 clusters. We have determined the variation in the mosaicity of fresh and thermally treated single crystals of Mn12 by analyzing the widening of low angle x-ray diffraction peaks. It has also been well established from both isothermal magnetization and relaxation experiments that there is a broad distribution of tunneling rates which is shifted to higher rates when the density of dislocations increases

    Vortex matter in superconducting mesoscopic disks: Structure, magnetization, and phase transitions

    Full text link
    The dense vortex matter structure and associated magnetization are calculated for type-II superconducting mesoscopic disks. The magnetization exhibits generically first-order phase transitions as the number of vortices changes by one and presents two well-defined regimes: A non-monotonous evolution of the magnitude of the magnetization jumps signals the presence of a vortex glass structure which is separated by a second-order phase transition at Hc2H_{c2} from a condensed state of vortices (giant vortex) where the magnitude of the jumps changes monotonously. We compare our results with Hall magnetometry measurements by Geim et al. (Nature 390, 259 (1997)) and claim that the magnetization exhibits clear traces of the presence of these vortex glass states.Comment: 4 pages, 3 figure

    Vortex structure of thin mesoscopic disks in the presence of an inhomogeneous magnetic field

    Full text link
    The vortex states in a thin mesoscopic disk are investigated within the phenomenological Ginzburg-Landau theory in the presence of different ''model'' magnetic field profiles with zero average field which may result from a ferromagnetic disk or circulating currents in a loop near the superconductor. We calculated the dependences of both the ground and metastable states on the magnitude and shape of the magnetic field profile for different values of the order parameter angular moment, i.e. the vorticity. The regions of existence of the multi-vortex state and the giant vortex state are found. We analysed the phase transitions between these states and studied the contribution from ring-shaped vortices. A new transition between different multi-vortex configurations as the ground state is found. Furthermore, we found a vortex state consisting of a central giant vortex surrounded by a collection of anti-vortices which are located in a ring around this giant vortex. The limit to a disk with an infinite radius, i.e. a film, will also be discussed. We also extended our results to ''real'' magnetic field profiles and to the case in which an external homogeneous magnetic field is present.Comment: 17 pages, 23 figures. Submitted to PR

    An effective lowest Landau level treatment of demagnetization in superconducting mesoscopic disks

    Full text link
    Demagnetization, which is inherently present in the magnetic response of small finite-size superconductors, can be accounted for by an effective κ\kappa within a two-dimensional lowest Landau level approximation of the Ginzburg-Landau functional. We show this by comparing the equilibrium magnetization of superconducting mesoscopic disks obtained from the numerical solution of the three-dimensional Ginzburg-Landau equations with that obtained in the ``effective'' LLL approximation.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Effect of ZnO, ZrO2 and B2O3 on clinkerization process. Part I. Clinkerization reactions and clinker composition

    Get PDF
    El empleo de residuos cerámicos como materia prima alternativa en la fabricación del crudo de cemento Portland, aumenta el contenido de ZnO, ZrO2 y B2O3 en el clinker. Estos elementos se encuentran en la capa esmaltada de los residuos cerámicos incorporados al crudo. Por ello el presente trabajo de investigación aborda el estudio del efecto que tiene la adición en el crudo de contenidos del 0,5 y 2% de ZnO, ZrO2 y B2O3 de manera individual y conjunta en los procesos de clinkerización, en la distribución y morfología de las fases mineralógicas del clinker. Los resultados obtenidos han demostrado que el ZnO y ZrO2 permanecen fijados en el clinker, sin embargo el B2O3 se volatiliza parcialmente. El ZnO actúa como fundente, mientras que el ZrO2 y el B2O3 no aumentan el contenido de fase fundida. La adición de estos óxidos al crudo modifica el contenido de las principales fases mineralógicas del clinker. El ZnO disminuye los contenidos de C3S y C3A, el ZrO2 disminuye marcadamente la fase ferrítica y el B2O3 estabiliza el C2S. En los clinkeres obtenidos a partir de la adición del 2% de ZnO y ZrO2 se identifica la presencia de nuevas fases mineralógicas, 3CaO·ZnO·2Al2O3, y CaZrO3The use of clay-based product waste as an alternative prime material in Portland cement raw mixes raises the ZnO, ZrO2 and B2O3 content in the clinker. These compounds are found in the enamelled surface of the tile added to the raw mix. The present study explores the effect of adding 0.5 and 2% ZnO, ZrO2 and B2O3 to the raw mix, separately and jointly, on clinkerization and the distribution and morphology of the mineral phases in the clinker. The findings showed that while ZnO and ZrO2 are fixed in the clinker, B2O3 is partially volatized. Zinc oxide acted as a flux, while neither ZrO2 nor B2O3 increased the molten phase. The addition of the oxides to the raw mix changed the content of the main mineral phases in the clinker. Zinc oxide lowered the C3S and C3A contents, ZrO2 reduced the ferritic phase and B2O3 stabilized C2S. New mineral phases, namely 3CaO·ZnO·2Al2O3 and CaZrO3, were identified in the clinkers obtained when 2% ZnO and ZrO2 were added to the raw mi
    corecore