64 research outputs found

    Brain Endothelium: The “Innate Immunity Response Hypothesis” in Cerebral Malaria Pathogenesis

    Get PDF
    Cerebral malaria (CM) is a life-threatening neurological syndrome caused by Plasmodium falciparum infection afflicting mainly children in Africa. Current pathogenesis models implicate parasite and host-derived factors in impairing brain vascular endothelium (BVE) integrity. Sequestration of Plasmodium-infected red blood cells (iRBCs) in brain microvessels is a hallmark of CM pathology. However, the precise mechanisms driving loss of blood-brain barrier (BBB) function with consequent brain injury are still unsettled and it is plausible that distinct pathophysiology trajectories are involved. Studies in humans and in the mouse model of CM indicate that inflammatory reactions intertwined with microcirculatory and coagulation disturbances induce alterations in vascular permeability and impair BBB integrity. Yet, the role of BVE as initiator of immune responses against parasite molecules and iRBCs is largely unexplored. Brain endothelial cells express pattern recognition receptors (PRR) and are privileged sensors of blood-borne infections. Here, we focus on the hypothesis that innate responses initiated by BVE and subsequent interactions with immune cells are critical to trigger local effector immune functions and induce BBB damage. Uncovering mechanisms of BVE involvement in sensing Plasmodium infection, recruiting of immune cells and directing immune effector functions could reveal pharmacological targets to promote BBB protection with potential applications in CM clinical management

    Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia are macrophage-like cells that constantly sense the microenvironment within the central nervous system (CNS). In the event of neuronal stress or injury, microglial cells rapidly react and change their phenotype. This response may lead to a deleterious type of microglial activation, which is often associated with neuroinflammation and neurotoxicity in several neuropathological conditions. We investigated the molecular mechanisms underlying triggering of microglial activation by necrotic neuronal damage.</p> <p>Methods</p> <p>Primary cultures of microglia were used to study the effect of necrotic neurons on microglial inflammatory responses and toxicity towards cerebellar granule neurons (CGN). The mouse hippocampal cell line, HT22, was used in this study as the main source of necrotic neurons to stimulate microglia. To identify the signal transduction pathways activated in microglia, primary microglial cultures were obtained from mice deficient in Toll-like receptor (TLR) -2, -4, or in the TLR adapter protein MyD88.</p> <p>Results</p> <p>Necrotic neurons, but not other necrotic cell types, induced microglial activation which was characterized by up-regulation of: i) MHC class II; ii) co-stimulatory molecules, i.e. CD40 and CD24; iii) β2 integrin CD11b; iii) pro-inflammatory cytokines, i.e. interleukin 6 (IL-6), IL-12p40 and tumor-necrosis factor (TNF); iv) pro-inflammatory enzymes such as nitric oxide synthase (iNOS, type II NOS), indoleamine 2,3-dioxygenase (IDO) and cyclooxygenase-2 (COX-2) and increased microglial motility. Moreover, microglia-conditioned medium (MCM) obtained from cultures of activated microglia showed increased neurotoxicity mediated through the <it>N</it>-methyl-D-aspartate receptor (NMDAR). The activation of microglia by necrotic neurons was shown to be dependent on the TLR-associated adapter molecule myeloid differentiation primary response gene (<it>MyD88</it>). Furthermore, MyD88 mediated enhanced neurotoxicity by activated microglia through up-regulation of the expression and activity of glutaminase, an enzyme that produces glutamate, which is an NMDAR agonist.</p> <p>Conclusion</p> <p>These results show that necrotic neurons activate in microglia a MyD88-dependent pathway responsible for a pro-inflammatory response that also leads to increased neurotoxic activity through induction of glutaminase. This finding contributes to better understanding the mechanisms causing increased neuroinflammation and microglial neurotoxicity in a neurodegenerative environment.</p

    Microglial Sirtuin 2 shapes long-term potentiation in hippocampal slices

    Get PDF
    Copyright © 2020 Sa de Almeida, Vargas, Fonseca-Gomes, Tanqueiro, Belo, Miranda-Lourenço, Sebastião, Diógenes and Pais. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Microglial cells have emerged as crucial players in synaptic plasticity during development and adulthood, and also in neurodegenerative and neuroinflammatory conditions. Here we found that decreased levels of Sirtuin 2 (Sirt2) deacetylase in microglia affects hippocampal synaptic plasticity under inflammatory conditions. The results show that long-term potentiation (LTP) magnitude recorded from hippocampal slices of wild type mice does not differ between those exposed to lipopolysaccharide (LPS), a pro-inflammatory stimulus, or BSA. However, LTP recorded from hippocampal slices of microglial-specific Sirt2 deficient (Sirt2-) mice was significantly impaired by LPS. Importantly, LTP values were restored by memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors. These results indicate that microglial Sirt2 prevents NMDA-mediated excitotoxicity in hippocampal slices in response to an inflammatory signal such as LPS. Overall, our data suggest a key-protective role for microglial Sirt2 in mnesic deficits associated with neuroinflammation.This study was supported by Santa Casa da Misericórdia de Lisboa (MB37-2017), GAPIC Research Program of the University of Lisbon Medical School (n° 2014002 and n° 2015028) and the following doctoral grants: PD/BD/128091/2016, SFRH/BD/118238/2016, PD/BD/114337/2016, and PD/BD/1144- 41/2016.info:eu-repo/semantics/publishedVersio

    Natural history and comorbidities of generalised and partial lipodystrophy syndromes in Spain

    Get PDF
    The rarity of lipodystrophies implies that they are not well-known, leading to delays in diagnosis/misdiagnosis. The aim of this study was to assess the natural course and comorbidities of generalised and partial lipodystrophy in Spain to contribute to their understanding. Thus, a total of 140 patients were evaluated (77.1% with partial lipodystrophy and 22.9% with generalised lipodystrophy). Clinical data were collected in a longitudinal setting with a median follow-up of 4.7 (0.5-17.6) years. Anthropometry and body composition studies were carried out and analytical parameters were also recorded. The estimated prevalence of all lipodystrophies in Spain, excluding Köbberling syndrome, was 2.78 cases/million. The onset of phenotype occurred during childhood in generalised lipodystrophy and during adolescence-adulthood in partial lipodystrophy, with the delay in diagnosis being considerable for both cohorts. There are specific clinical findings that should be highlighted as useful features to take into account when making the differential diagnosis of these disorders. Patients with generalised lipodystrophy were found to develop their first metabolic abnormalities sooner and a different lipid profile has also been observed. Mean time to death was 83.8 ± 2.5 years, being shorter among patients with generalised lipodystrophy. These results provide an initial point of comparison for ongoing prospective studies such as the ECLip Registry study.This study was supported by the Instituto de Salud Carlos III (grant PI22/00514) and co-funded by the European Union, and an intramural grant from the Xunta de Galicia, ED431B 2020/37. AF-P receives funding from the Fundación Alfonso Martın Escudero. SS-I ́ was awarded a Research Fellowship, granted by the Asociación Española de Familiares y Afectados de Lipodistrofias (AELIP).S

    Myeloid Sirtuin 2 expression does not impact long-term Mycobacterium tuberculosis control

    Get PDF
    Sirtuins (Sirts) regulate several cellular mechanisms through deacetylation of several transcription factors and enzymes. Recently, Sirt2 was shown to prevent the development of inflammatory processes and its expression favors acute Listeria monocytogenes infection. The impact of this molecule in the context of chronic infections remains unknown. We found that specific Sirt2 deletion in the myeloid lineage transiently increased Mycobacterium tuberculosis load in the lungs and liver of conditional mice. Sirt2 did not affect long-term infection since no significant differences were observed in the bacterial burden at days 60 and 120 post-infection. The initial increase in M. tuberculosis growth was not due to differences in inflammatory cell infiltrates in the lung, myeloid or CD4+ T cells. The transcription levels of IFN-?, IL-17, TNF, IL-6 and NOS2 were also not affected in the lungs by Sirt2-myeloid specific deletion. Overall, our results demonstrate that Sirt2 expression has a transitory effect in M. tuberculosis infection. Thus, modulation of Sirt2 activity in vivo is not expected to affect chronic infection with M. tuberculosis.Fundação para a Ciência e Tecnologia, Portugal and cofunded by Programa Operacional Regional do Norte (ON.2–O Novo Norte), Quadro de Referência Estratégico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER). Project grants: PTDC/SAU-MII/101977/2008 (to AGC) and PTDC/BIA-BCM/102776/2008 (to MS). LMT was supported by FCT Grant SFRH/BPD/77399/20

    Sugar-based bactericides targeting phosphatidylethanolamine-enriched membranes

    Get PDF
    Free PMC Article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242839/Anthrax is an infectious disease caused by Bacillus anthracis, a bioterrorism agent that develops resistance to clinically used antibiotics. Therefore, alternative mechanisms of action remain a challenge. Herein, we disclose deoxy glycosides responsible for specific carbohydrate-phospholipid interactions, causing phosphatidylethanolamine lamellar-to-inverted hexagonal phase transition and acting over B. anthracis and Bacillus cereus as potent and selective bactericides. Biological studies of the synthesized compound series differing in the anomeric atom, glycone configuration and deoxygenation pattern show that the latter is indeed a key modulator of efficacy and selectivity. Biomolecular simulations show no tendency to pore formation, whereas differential metabolomics and genomics rule out proteins as targets. Complete bacteria cell death in 10 min and cellular envelope disruption corroborate an effect over lipid polymorphism. Biophysical approaches show monolayer and bilayer reorganization with fast and high permeabilizing activity toward phosphatidylethanolamine membranes. Absence of bacterial resistance further supports this mechanism, triggering innovation on membrane-targeting antimicrobials.The European Union is gratefully acknowledged for the support of the project “Diagnostic and Drug Discovery Initiative for Alzheimer’s Disease” (D3i4AD), FP7-PEOPLE-2013-IAPP, GA 612347. We thank the Management Authorities of the European Regional Development Fund and the National Strategic Reference Framework for the support of the Incentive System - Research and Technological Development Co-Promotion FACIB Project number 21457. Fundação para a Ciência e a Tecnologia is also acknowledged for the support of projects UID/Multi/00612/2013, FCT/UID/ Multi/04046/2013, IF/00808/2013/CP1159/CT0003, PTDC/BBBBQB/6071/2014, as well as for the post-doc grant SFRH/BPD/42567/2007 (A.M.), the Ph.D. grants SFRH/BDE/51998/2012 (C.D.), and SFRH/BDE/51957/2012 (J.P.P.), both co-sponsored by CIPAN, and also for the Ph.D. grant SFRH/BD/116614/2016 (R.N.).info:eu-repo/semantics/publishedVersio

    Setting performance indicators for coastal marine protected areas: An expert-based methodology

    Get PDF
    Marine Protected Areas (MPAs) require effective indicators to assess their performance, in compliance with the goals of relevant national and international commitments. Achieving and prioritizing shortlists of multidisciplinary indicators demands a significant effort from specialists to depict the multiple conservation and socioeconomic interests, and the large complexity of natural systems. The present paper describes a structured expert-based methodology (process and outputs) to co-define a list of multidisciplinary MPA performance indicators. This work was promoted by the management authority of coastal MPAs in mainland Portugal to gather a consensual and feasible list of indicators that would guide the design of a future national monitoring program. Hence, Portuguese coastal MPAs served as a case study to develop such a process between 2019 and 2020. In the end, participants (1) agreed on a shortlist of prioritized indicators (i.e., environmental, governance, and socioeconomic indicators) and (2) defined minimum monitoring frequencies for the indicators in this list, compatible with the potential replicability of the associated survey methods. The present approach recommends that management plans incorporate monitoring procedures and survey methods, with a validated list of indicators and associated monitoring periodicity, agreed among researchers, MPA managers and governance experts. The proposed methodology, and the lessons learned from it, can support future processes aiming to define and prioritize MPA performance indicatorsFundação para a Ciência e Tecnologia - FCT, European Maritime and Fisheries Fund (EMFF)info:eu-repo/semantics/publishedVersio
    corecore