7 research outputs found

    Selective oral MEK1/2 inhibitor pimasertib : a phase I trial in patients with advanced solid tumors

    No full text
    Background The Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (Ras/Raf/MEK/ERK) signaling cascade is frequently constitutively activated in human cancers. Pimasertib is a selective and potent adenosine triphosphate non-competitive MEK1/2 inhibitor. Objective Our objectives were to describe the results of a phase I, first-in-human, dose-escalation trial of pimasertib that investigated the maximum tolerated dose, recommended phase II dose, and safety, as well as other endpoints. Patients and Methods Four dosing schedules of pimasertib (once daily [qd], 5 days on, 2 days off; qd, 15 days on, 6 days off; continuous qd; continuous twice daily [bid]) were evaluated in patients with advanced solid tumors. Each treatment cycle lasted 21 days. The primary objective was to determine the maximum tolerated dose based on dose-limiting toxicities (DLTs) evaluated during cycle 1, and the recommended phase II dose (RP2D). Secondary objectives included safety, pharmacokinetics, pharmacodynamics, and antitumor activity. Results Overall, 180 patients received pimasertib (dose range 1-255 mg/day). DLTs were mainly observed at doses >= 120 mg/day and included skin rash/acneiform dermatitis and ocular events, such as serous retinal detachment. The most common drug-related adverse events were consistent with class effects, including diarrhea, skin disorders, ocular disorders, asthenia/fatigue, and peripheral edema. The median time to maximum pimasertib concentration was 1.5 h across dosing schedules, and the apparent terminal half-life was 5 h across qd dosing schedules. Pimasertib decreased ERK phosphorylation within 2 h of administration, which was maintained for up to 8 h at higher doses and prolonged with bid dosing. Conclusions Based on the safety profile and efficacy signals, a continuous bid regimen was the preferred dosing schedule and the RP2D was defined as 60 mg bid

    Selective oral MEK1/2 inhibitor pimasertib in metastatic melanoma : antitumor activity in a phase I, dose-escalation trial

    No full text
    Background Pimasertib is a selective, potent mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor. Objectives The aim of this study was to describe the efficacy, safety, and pharmacodynamics of pimasertib at pharmacologically active doses in a cohort of patients with locally advanced/metastatic melanoma from a first-in-human study of pimasertib. Methods This was a phase I, open-label, two-part, dose-escalation study. Part 1 was conducted in patients with solid tumors and identified the maximum tolerated dose, while Part 2 was restricted to patients with advanced/metastatic melanoma. Endpoints included safety, pharmacodynamics, and antitumor activity. We present data for patients with melanoma only from both parts of the study. Results In total, 93 patients with melanoma received pimasertib, 89 of whom received pharmacologically active doses (28-255 mg/day) across four dose regimens in the two parts of the study. The objective response rate was 12.4% (11/89): complete response (n = 1) and partial response (PR; n = 10). Six patients responded for > 24 weeks. Nine of the 11 responders had tumors with B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF; n = 6) and/or NRAS Proto-Oncogene, GTPase (NRAS; n = 3) mutations. Forty-six patients had stable disease (SD). In patients with ocular melanoma (n = 13), best overall response was PR (n = 1), SD (n = 11), and disease progression (n = 1). Phosphorylated extracellular signal-regulated kinase (pERK) levels were substantially reduced within 2 h of treatment and inhibition was sustained with continuous twice-daily dosing. Treatment-related, recurrent, grade 3 or higher adverse events were reported in eight patients, including diarrhea, and skin and ocular events. Conclusion Results from this phase I study indicate that pimasertib has clinical activity in patients with locally advanced/metastatic melanoma, particularly BRAF- and NRAS-mutated tumors, at clinically relevant doses associated with pERK inhibition in peripheral blood mononuclear cells

    Molecular Signature of Mineralocorticoid Receptor Signaling in Cardiomyocytes: From Cultured Cells to Mouse Heart

    No full text
    Excess mineralocorticoid signaling is deleterious for cardiovascular functions, as demonstrated by the beneficial effects of mineralocorticoid receptor (MR) antagonism on morbidity and mortality in patients with heart failure. However, the understanding of signaling pathways after MR activation in the heart remains limited. We performed transcriptomic analyses in the heart of double-transgenic mice with conditional, cardiomyocyte-specific, overexpression of the MR (MRcardio mice) or the glucocorticoid receptor (GR; GRcardio mice). Some of the genes induced in MRcardio mice were selected for comparative evaluation (real time PCR) in vivo in the heart of mice and ex vivo in the MR-expressing cardiomyocyte H9C2 cell line after aldosterone or corticosterone treatment. We demonstrate that chronic MR overexpression in the heart results in a limited number of induced (n = 24) and repressed (n = 22) genes compared with their control littermates. These genes are specifically modulated by MR because there is limited overlap (three induced, four repressed) with the genes that are regulated in the heart of GRcardio mice (compared with control mice: 70 induced, 73 repressed). Interestingly, some MR-induced genes that are up-regulated in vivo in mice are also induced by 24-h aldosterone treatment in H9C2 cells, such as plasminogen activator inhibitor 1 and Serpina-3 (α1-antichymotrypsin). The signaling pathways that are affected by long-term activation of MR may be of particular interest to design novel therapeutic targets in cardiac diseases

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore