570 research outputs found

    Effects of Running on Femoral Articular Cartilage Thickness for Anterior Cruciate Ligament Reconstruction Patients and Non-ACLR Control Subjects

    Get PDF
    Anterior cruciate ligament reconstruction (ACLR) patients are more likely to develop posttraumatic knee osteoarthritis than non-ACLR counterparts. The effect of running on femoral articular cartilage thickness is unclear. PURPOSE: The purpose of this study was to compare how 30 minutes of running influences femoral articular cartilage thickness for ACLR patients and non-ACLR control subjects. We hypothesized that running would deform the femoral articular cartilage more for the ACLR patients than for the control subjects. METHODS: We recruited 20 individuals with primary unilateral ACLR and 20 matched non-ACLR controls. ACLR patients and control subjects were matched based upon age, gender, BMI, and weekly running mileage. The present procedures were approved by the appropriate institutional board and all subjects provided informed consent before data collection. We used ultrasound imaging to measure femoral articular cartilage thickness before and after 30 minutes of running. The ultrasound images were manually analyzed using ImageJ software by the same investigator. Total femoral articular cartilage cross-sectional area of each image was segmented into three regions: medial, lateral, and intercondylar. Deformation due to the run was compared between the ACLR patients and control subjects for each region using independent t tests (P \u3c 0.05, adjusted for multiple comparisons). RESULTS: The 30-minute run resulted in more deformation for the ACLR patients (0.03 ± 0.01 cm) than the matched controls (0.01 ± 0.01 cm) for the medial region (p \u3c 0.01) of the femoral articular cartilage. Identically, the 30-minute run resulted in more deformation for the ACLR patients (0.03 ± 0.01 cm) than the matched controls (0.01 ± 0.01 cm; p \u3c 0.01) for an average of the entire articular cartilage area (medial, lateral, and intercondylar). No significant differences existed between groups for the lateral or intercondylar regions. CONCLUSION: Thirty minutes of running deformed medial and overall femoral articular cartilage more for ACLR patients than non-ACLR control subjects

    Pre-main sequence stars in the Cepheus flare region

    Full text link
    We present results of optical spectroscopic and BVR_CI_C photometric observations of 77 pre-main sequence (PMS) stars in the Cepheus flare region. A total of 64 of these are newly confirmed PMS stars, originally selected from various published candidate lists. We estimate effective temperatures and luminosities for the PMS stars, and comparing the results with pre-main sequence evolutionary models we estimate stellar masses of 0.2-2.4M_sun and stellar ages of 0.1-15 Myr. Among the PMS stars, we identify 15 visual binaries with separations of 2-10 arcsec. From archival IRAS, 2MASS, and Spitzer data, we construct their spectral energy distributions and classify 5% of the stars as Class I, 10% as Flat SED, 60% as Class II, and 3% as Class III young stellar objects (YSOs). We identify 12 CTTS and 2 WTTS as members of NGC 7023, with mean age of 1.6 Myr. The 13 PMS stars associated with L1228 belong to three small aggregates: RNO 129, L1228A, and L1228S. The age distribution of the 17 PMS stars associated with L1251 suggests that star formation has propagated with the expansion of the Cepheus flare shell. We detect sparse aggregates of 6-7 Myr old PMS stars around the dark clouds L1177 and L1219, at a distance of 400 pc. Three T Tauri stars appear to be associated with the Herbig Ae star SV Cep at a distance of 600 pc. Our results confirm that the molecular complex in the Cepheus flare region contains clouds of various distances and star forming histories.Comment: 61 pages, 27 figures, 8 tables; accepted for publication by ApJ

    Running Biomechanics and Knee Cartilage Health in ACLR Patients

    Get PDF
    Anterior cruciate ligament reconstruction (ACLR) patients are more likely to subsequently suffer from knee osteoarthritis than non-ACLR counterparts. Exercise is thought to influence articular cartilage, however, it is unclear how running biomechanics are associated with femoral cartilage thickness and composition in ACLR patients. PURPOSE: The purpose of this study was to investigate relationships between running biomechanics and measures of femoral articular cartilage condition (thickness and composition) in ACLR patients and control subjects. METHODS: We used ultrasound and MRI (T2 mapping sequence) to measure articular cartilage thickness and composition, respectively, for 20 ACLR patients (age: 23 ± 3 yrs; mass: 70 ± 10 kg; time post-ACLR: 14.6 ± 6.1 months) and 20 matched controls (age: 22 ± 2 yrs; mass: 67 ± 11 kg). After these measures, all participants completed a 30-minute run on a force-instrumented treadmill. Correlational analyses were used to explore relationships between running biomechanics (vertical ground reaction force (vGRF)) and femoral cartilage thickness and composition (T2 relaxation time). The present procedures were approved by the appropriate institutional board and all subjects provided informed consent before data collection was performed. RESULTS: Significant positive correlations existed for the control subjects only between peak vGRF and overall (r = 0.34; p \u3c 0.01), medial (r = 0.23; p \u3c 0.01), lateral (r = 0.39; p = 0.02), and intercondylar (r = 0.31; p \u3c 0.01) femoral thickness. The ACLR patients showed significant negative correlations between T2 relaxation time for the central-medial region of the femoral condyle, and peak vGRF (r = −0.53; p = 0.01) and vertical impulse due to the vGRF (r = −0.46; p = 0.04). CONCLUSION: These findings offer some limited support for the idea that femoral articular cartilage benefits from increase vGRF during running. This is evidenced by the increased thickness for the control subjects and decreased T2 relaxation time (indicative of increased free-flowing water in the cartilage) for the ACLR patients, as running vGRF increased

    Femoral Articular Cartilage Quality, but Not Thickness, Is Decreased for Anterior Cruciate Ligament Reconstruction Patients Relative to Control

    Get PDF
    Anterior cruciate ligament reconstruction (ACLR) patients are at risk of developing posttraumatic knee osteoarthritis (OA). The etiology of posttraumatic knee OA is complex, potentially involving biomechanical and biochemical factors. Changes in femoral cartilage thickness and composition are associated with knee OA, while current research is ambiguous on cartilage in ACLR patients. PURPOSE: This study aimed to compare femoral cartilage thickness and T2 relaxation time (a compositional measure) between ACLR patients and healthy controls in a resting state. We hypothesized that ACLR patients would exhibit thinner femoral cartilage and increased T2 relaxation times. METHODS: Twenty ACLR patients (6-24 months post-surgery) and 20 matched healthy controls were recruited following institutional board approval. Ultrasound and magnetic resonance imaging data were collected on two separate days, allowing cartilage thickness and composition measurements to be made, respectively. Statistical analyses, including independent t-tests and Holm-Bonferroni corrections, were performed on selected regions of interest. RESULTS: The ACLR group showed increased T2 relaxation times in four of eight femoral regions compared to controls. No significant differences in femoral cartilage thickness were observed between the groups. The primary finding from this study is that ACLR patients did not show differences in femoral cartilage thickness (a morphological measure), but displayed prolonged T2 relaxation times (a compositional measure) compared to controls, at rest. This finding suggests that compositional changes precede morphological shifts in femoral cartilage in early post-ACLR periods (6-24 months). CONCLUSION: These early compositional changes may indicate articular cartilage that is more compressible and subject to increased strain on the solid components of the joint. While ultrasound is a more accessible imaging method, magnetic resonance imaging may provide a more accurate and early evaluation of cartilage quality. Further research is needed to develop practical tools for early detection and monitoring of cartilage degradation in ACLR patients before progression into knee osteoarthritis

    DNA methylation in newborns conceived by assisted reproductive technology

    Get PDF
    Assisted reproductive technology (ART) may affect fetal development through epigenetic mechanisms as the timing of ART procedures coincides with the extensive epigenetic remodeling occurring between fertilization and embryo implantation. However, it is unknown to what extent ART procedures alter the fetal epigenome. Underlying parental characteristics and subfertility may also play a role. Here we identify differences in cord blood DNA methylation, measured using the Illumina EPIC platform, between 962 ART conceived and 983 naturally conceived singleton newborns. We show that ART conceived newborns display widespread differences in DNA methylation, and overall less methylation across the genome. There were 607 genome-wide differentially methylated CpGs. We find differences in 176 known genes, including genes related to growth, neurodevelopment, and other health outcomes that have been associated with ART. Both fresh and frozen embryo transfer show DNA methylation differences. Associations persist after controlling for parents’ DNA methylation, and are not explained by parental subfertility.publishedVersio

    Modeling the distributions of tegu lizards in native and potential invasive ranges

    Get PDF
    Invasive reptilian predators can have substantial impacts on native species and ecosystems. Tegu lizards are widely distributed in South America east of the Andes, and are popular in the international live animal trade. Two species are established in Florida (U.S.A.)-Salvator merianae (Argentine black and white tegu) and Tupinambis teguixin sensu lato (gold tegu)-and a third has been recorded there-S. rufescens (red tegu). We built species distribution models (SDMs) using 5 approaches (logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy) based on data from the native ranges. We then projected these models to North America to develop hypotheses for potential tegu distributions. Our results suggest that much of the southern United States and northern MĂ©xico probably contains suitable habitat for one or more of these tegu species. Salvator rufescens had higher habitat suitability in semi-arid areas, whereas S. merianae and T. teguixin had higher habitat suitability in more mesic areas. We propose that Florida is not the only state where these taxa could become established, and that early detection and rapid response programs targeting tegu lizards in potentially suitable habitat elsewhere in North America could help prevent establishment and abate negative impacts on native ecosystems.Fil: Jarnevich, Catherine S.. U.s. Geological Survey; Estados UnidosFil: Hayes, Mark A.. Cherokee Nation Technologies; Estados UnidosFil: Fitzgerald, Lee A.. Department Of Wildlife And Fisheries Sciences; Estados UnidosFil: Yackel Adams, Amy A.. U.s. Geological Survey; Estados UnidosFil: Falk, Bryan G.. U.s. Geological Survey; Estados Unidos. National Park Service; Estados UnidosFil: Collier, Michelle A. M.. National Park Service; Estados Unidos. U.s. Geological Survey; Estados UnidosFil: Bonewell, Lea` R.. U.s. Geological Survey; Estados UnidosFil: Klug, Page E.. U.s. Geological Survey; Estados Unidos. U.S. Department of Agriculture APHIS, Wildlife Services, National Wildlife Research Center, North Dakota Field Station; Estados UnidosFil: Naretto, Sergio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Diversidad y EcologĂ­a Animal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto de Diversidad y EcologĂ­a Animal; ArgentinaFil: Reed, Robert N.. U.s. Geological Survey; Estados Unido

    The X-factor in ART: does the use of assisted reproductive technologies influence DNA methylation on the X chromosome?

    Get PDF
    Background Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother–father–newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian ‘Clinical review of the Health of adults conceived following Assisted Reproductive Technologies’ (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies (‘XWASs’ hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. Results In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. Conclusions Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.publishedVersio

    Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope

    Full text link
    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2-degree angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4-sigma detection of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version accepted by Physical Review Letters. Likelihood code can be downloaded from http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
    • 

    corecore