1,018 research outputs found

    Biotic Element Analysis in Biogeography

    Get PDF
    Biotic element analysis is an alternative to the areas-of-endemism approach for recognizing the presence or absence of vicariance events in a given region. If an ancestral biota was fragmented by vicariance events, biotic elements or clusters of distribution areas should emerge. We propose a statistical test for clustering of distribution areas based on a Monte Carlo simulation with a null model that considers the spatial autocorrelation in the data. The hypothesis tested is that the observed degree of clustering of ranges can be explained by the range size distribution, the varying number of taxa per cell, and the spatial autocorrelation of the occurrences of a taxon alone. A method for the delimitation of biotic elements which uses model-based Gaussian clustering is introduced. We demonstrate our methods and show the importance of grid size by means of a case study, an analysis of the distribution patterns of southern African species of the weevil genus Scobius. The example highlights the difficulties in delimiting areas of endemism if dispersal has occurred and illustrates the advantages of the biotic element approac

    Caries Epidemiology and Community Dentistry: Chances for Future Improvements in Caries Risk Groups. Outcomes of the ORCA Saturday Afternoon Symposium, Greifswald, 2014. Part 1

    Get PDF
    This paper reviews the first part of the outcomes of the ORCA Saturday Afternoon Symposium 2014 dealing with ‘caries epidemiology and community dentistry: chances for future improvements in caries risk groups'. After the caries decline in many countries, there are remaining pockets of higher caries levels, mostly in the primary dentition and/or linked to a low socio-economic status (SES). The review into the evidence of caries-preventive measures clearly points to the use of fluorides, especially toothbrushing with fluoridated toothpaste and collective measures such as water fluoridation. In contrast to several unsuccessful high-risk approaches, community and public health programmes seem to be able to ensure a population-wide access and compliance in risk groups. Their simple and evidence-based measures mostly combine regular plaque removal and fluoride applications via toothbrushing, at least for children and adolescents. For the future, the common risk factor approach which addresses associations between oral health, social deprivation, diet, hygiene, smoking, alcohol use and stress should lead to combined efforts with other community health and education specialists. Further engagement with public policy, community leaders and administration is needed in order to strengthen healthy choices and behaviour, e.g. in ‘healthy' schools and kindergartens. It seems advisable that these population programmes also aim at improving upstream factors

    Cross-fitted instrument: A blueprint for one-sample Mendelian randomization

    Get PDF
    Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined ‘Cross-Fitted Instrument’ (CFI). CFI splits the data at random and estimates the impact of the instrument on the exposure in each partition. These estimates are then used to perform an IVR on each partition. We adapt CFI to the Mendelian randomization (MR) setting and term this adaptation ‘Cross-Fitting for Mendelian Randomization’ (CFMR). We show that, even when using weak instruments, CFMR is, at worst, biased towards the null, which makes it a conservative one-sample MR approach. In particular, CFMR remains conservative even when the two samples used to perform the MR analysis completely overlap, whereas current state-of-the-art approaches (e.g., MR RAPS) display substantial bias in this setting. Another major advantage of CFMR lies in its use of all of the available data to select genetic instruments, which maximizes statistical power, as opposed to traditional two-sample MR where only part of the data is used to select the instrument. Consequently, CFMR is able to enhance statistical power in consortia-led meta-analyses by enabling a conservative one-sample MR to be performed in each cohort prior to a meta-analysis of the results across all the cohorts. In addition, CFMR enables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important in meta-analyses where the participating cohorts may have different ethnicities. To our knowledge, none of the current MR approaches can account for such heterogeneity. Finally, CFMR enables the application of MR to exposures that are either rare or difficult to measure, which would normally preclude their analysis in the regular two-sample MR setting.publishedVersio

    Eighteenth Year of the Gulf of Maine Environmental Monitoring Program

    Get PDF
    This report summarizes the metals and organic contaminant data associated with the collection and analyses of blue mussel (Mytilus edulis) tissue from selected sites along the Gulf of Maine coast during the 2008 sampling season. Contaminant monitoring is conducted by the Gulfwatch Program for the Gulf of Maine Council on the Marine Environment (GOMC). A subset of these data is compared with analytical results from earlier Gulfwatch monitoring (2001-2007). Statistical analyses are limited to descriptive measures of replicates from selected sampling sites and include: arithmetic means, and appropriate measures of variance. The primary purpose of this report is to present the current annual results, present graphical representation of spatial and temporal trends and identify potential outliers in order to provide investigators and other interested persons with contemporary information concerning water quality in the Gulf of Maine, as reflected by uptake into resident shellfish (mussels and clams)

    Integrating top-down and bottom-up approaches to design global change adaptation at the river basin scale

    Full text link
    The high uncertainty associated with the effect of global change on water resource systems calls for a better combination of conventional top-down and bottom-up approaches, in order to design robust adaptation plans at the local scale. The methodological framework presented in this article introduces bottom-up meets top-down integrated approach to support the selection of adaptation measures at the river basin level by comprehensively integrating the goals of economic efficiency, social acceptability, environmental sustainability and adaptation robustness. The top-down approach relies on the use of a chain of models to assess the impact of global change on water resources and its adaptive management over a range of climate projections. Future demand scenarios and locally prioritised adaptation measures are identified following a bottom-up approach through a participatory process with the relevant stakeholders and experts. The optimal combinations of adaptation measures are then selected using a hydro-economic model at basin scale for each climate projection. The resulting adaptation portfolios are, finally, climate checked to define a robust least-regret programme of measures based on trade-offs between adaptation costs and the reliability of supply for agricultural demands. This innovative approach has been applied to a Mediterranean basin, the Orb river basin (France). Mid-term climate projections, downscaled from 9 General Climate Models, are used to assess the uncertainty associated with climate projections. Demand evolution scenarios are developed to project agricultural and urban water demands on the 2030 time horizon. The results derived from the integration of the bottom-up and top-down approaches illustrate the sensitivity of the adaptation strategies to the climate projections, and provide an assessment of the trade-offs between the performance of the water resource system and the cost of the adaptation plan to inform local decision-making. The article contributes new methodological elements for the development of an integrated framework for decision-making under climate change uncertainty, advocating an interdisciplinary approach that bridges the gap between bottom-up and top-down approaches.The study has been financially supported by BRGM-ONEMA joint project on Hydro-economic modelling and by the IMPADAPT project (CGL2013-48424-C2-1-R) from the Spanish ministry MINECO (Ministerio de Economia y Competitividad) with European FEDER funds. Corentin Girard is supported by a grant from the University Lecturer Training Program (FPU12/03803) of the Ministry of Education, Culture and Sports of Spain. We also acknowledge the CERFACS for the climate scenarios provided from the SCRATCH 2010 dataset (March 2012 release - http://www.cerfacs.fr/similar to page/work/scratch/). We thank as well the anonymous reviewers and the Editors of Global Environmental Change, for their useful and encouraging comments during the review process.Girard, CDP.; Pulido-Velazquez, M.; Rinaudo, J.; Page Oliva, C.; Caballero, I. (2015). Integrating top-down and bottom-up approaches to design global change adaptation at the river basin scale. Global Environmental Change. 34:132-146. https://doi.org/10.1016/j.gloenvcha.2015.07.002S1321463

    Genome-wide DNA methylation in saliva and body size of adolescent girls

    Get PDF
    Aim: We performed an epigenome-wide association study within the Finnish Health in Teens cohort to identify differential DNA methylation and its association with BMI in adolescents. Materials & methods: Differential DNA methylation analyses of 3.1 million CpG sites were performed in saliva samples from 50 lean and 50 heavy adolescent girls by genome-wide targeted bisulfite-sequencing. Results: We identified 100 CpG sites with p-values <0.000524, seven regions by 'bumphunting' and five CpG islands that differed significantly between the two groups. The ten CpG sites and regions most strongly associated with BMI substantially overlapped with obesity-and insulin-related genes, including MC2R, IGFBPL1, IP6K1 and IGF2BP1. Conclusion: Our findings suggest an association between the saliva methylome and BMI in adolescence.Peer reviewe

    Role of soil texture, clay mineralogy, location, and temperature in coarse wood decomposition—a mesocosm experiment

    Get PDF
    Of all the major pools of terrestrial carbon (C), the dynamics of coarse woody debris (CWD) are the least understood. In contrast to soils and living vegetation, the study of CWD has rarely relied on ex situ methods for elaborating controls on decomposition rates. In this study, we report on a mesocosm incubation experiment examining how clay amount (8%, 16%, and 24% clay), clay type (soil reconstructed with kaolinite vs. montmorillonite), wood placement (on litter layer surface, at the litter layer–soil interface, buried in the mineral soil), and laboratory incubation temperature (10°, 20°, or 30°C) control decomposition rates of highly standardized stakes and blocks of coarse aspen wood. Clay type effect was pronounced, with wood decomposing more quickly in kaolinite- than in montmorillonite-amended soils, perhaps due to a combined effect of moisture and microbial access to the substrate. Clay amount had only very limited effect on wood decomposition, which was a function of contact with the mineral soil (Surface \u3c Interface \u3c Mineral), perhaps due to greater contact with the decomposer community. Temperature effects were significant and dependent on interactions with clay type and wood placement. Effects of temperature on wood decomposition declined as the effects of soil variables increased, suggesting a hierarchy of controls on wood decomposition rates. Both water content and temperature had a strong effect on wood decomposition. Our results highlight that multiple interacting factors likely regulate wood decomposition processes. Multifactorial field experiments are needed to examine the physical, chemical, and biological factors controlling wood decompositio
    • …
    corecore