43 research outputs found
Episodic mass loss in binary evolution to the Wolf-Rayet phase: Keck and HST proper motions of RY Scuti's nebula
Binary mass transfer via Roche-lobe overflow (RLOF) is a key channel for
producing stripped-envelope Wolf-Rayet (WR) stars and may be critical to
account for SN Ib/c progenitors. RY Scuti is an extremely rare example of a
massive binary star caught in this brief but important phase. Its toroidal
nebula indicates equatorial mass loss during RLOF, while the mass-gaining star
is apparently embedded in an opaque accretion disk. RY Scuti's toroidal nebula
has two components: an inner ionised double-ring system, and an outer dust
torus that is twice the size of the ionised rings. We present two epochs of
Lband Keck NGS-AO images of the dust torus, plus three epochs of HST images of
the ionised gas rings. Proper motions show that the inner ionised rings and the
outer dust torus came from two separate ejection events roughly 130 and 250 yr
ago. This suggests that RLOF in massive contact binaries can be accompanied by
eruptive and episodic burst of mass loss, reminiscent of LBVs. We speculate
that the repeating outbursts may arise in the mass gainer from instabilities
associated with a high accretion rate. If discrete mass-loss episodes in other
RLOF binaries are accompanied by luminous outbursts, they might contribute to
the population of extragalactic optical transients. When RLOF ends for RY
Scuti, the overluminous mass gainer, currently surrounded by an accretion disk,
will probably become a B[e] supergiant and may outshine the hotter mass-donor
star that should die as a Type Ib/c supernova.Comment: 15 pages, 7 figures, submitted to MNRA
The evolution of rotating stars
First, we review the main physical effects to be considered in the building
of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The
internal rotation law evolves as a result of contraction and expansion,
meridional circulation, diffusion processes and mass loss. In turn,
differential rotation and mixing exert a feedback on circulation and diffusion,
so that a consistent treatment is necessary.
We review recent results on the evolution of internal rotation and the
surface rotational velocities for stars on the Upper MS, for red giants,
supergiants and W-R stars. A fast rotation is enhancing the mass loss by
stellar winds and reciprocally high mass loss is removing a lot of angular
momentum. The problem of the ``break-up'' or -limit is critically
examined in connection with the origin of Be and LBV stars. The effects of
rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the
blue to red supergiant ratios, the formation of W-R stars, the chemical
abundances in massive stars as well as in red giants and AGB stars, are
reviewed in relation to recent observations for stars in the Galaxy and
Magellanic Clouds. The effects of rotation on the final stages and on the
chemical yields are examined, as well as the constraints placed by the periods
of pulsars. On the whole, this review points out that stellar evolution is not
only a function of mass M and metallicity Z, but of angular velocity
as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and
Astrophysics, vol. 38 (2000
The VLT-FLAMES Tarantula Survey
Context. The Tarantula region in the Large Magellanic Cloud (LMC) contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties.
Aims. Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories.
Methods. We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model fastwind with the genetic fitting algorithm pikaia to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening.
Results. We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60 M⊙, the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at Minit ≳ 25 M⊙. At masses below 60 M⊙, the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at Minit ≲ 18 M⊙. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7 V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behavior may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of Si iv to He i absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (i.e., νesini < 200kms-1) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are ~0.3 dex higher than earlier results. For stars brighter than 105 L⊙, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were fV ~ 1/8 to 1/6