11 research outputs found

    The Iceland Greenland Seas Project

    Get PDF
    A coordinated atmosphere-ocean research project, centered on a rare wintertime field campaign to the Iceland and Greenland Seas, seeks to determine the location and causes of dense water formation by cold-air outbreaks. The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere-ocean research program investigating climate processes in the source region of the densest waters of the Atlantic Meridional Overturning Circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region – including a research vessel, a research aircraft, moorings, sea gliders, floats and a meteorological buoy. A remarkable feature of the field campaign was the highly-coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal-ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the lifecycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere-ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modelling activities underway

    Current trends in cannulation and neuroprotection during surgery of the aortic arch in Europe†‡

    Get PDF
    OBJECTIVES To conduct a survey across European cardiac centres to evaluate the methods used for cerebral protection during aortic surgery involving the aortic arch. METHODS All European centres were contacted and surgeons were requested to fill out a short, comprehensive questionnaire on an internet-based platform. One-third of more than 400 contacted centres completed the survey correctly. RESULTS The most preferred site for arterial cannulation is the subclavian-axillary, both in acute and chronic presentation. The femoral artery is still frequently used in the acute condition, while the ascending aorta is a frequent second choice in the case of chronic presentation. Bilateral antegrade brain perfusion is chosen by the majority of centres (2/3 of cases), while retrograde perfusion or circulatory arrest is very seldom used and almost exclusively in acute clinical presentation. The same pumping system of the cardio pulmonary bypass is most of the time used for selective cerebral perfusion, and the perfusate temperature is usually maintained between 22 and 26°C. One-third of the centres use lower temperatures. Perfusate flow and pressure are fairly consistent among centres in the range of 10-15 ml/kg and 60 mmHg, respectively. In 60% of cases, barbiturates are added for cerebral protection, while visceral perfusion still receives little attention. Regarding cerebral monitoring, there is a general tendency to use near-infrared spectroscopy associated with bilateral radial pressure measurement. CONCLUSIONS These data represent a snapshot of the strategies used for cerebral protection during major aortic surgery in current practice, and may serve as a reference for standardization and refinement of different approache

    Elementary strategies of ethnic boundary making

    No full text
    corecore