49 research outputs found

    Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway

    Get PDF
    The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to identify novel components of the pathway, including key molecules that function as positive or negative regulators of Shh signalling. Data presented here define Tulp3 as a novel negative regulator of the Shh pathway. We have identified a new mouse mutant that is a strongly hypomorphic allele of Tulp3 and which exhibits expansion of ventral markers in the caudal spinal cord, as well as neural tube defects and preaxial polydactyly, consistent with increased Shh signalling. We demonstrate that Tulp3 acts genetically downstream of Shh and Smoothened (Smo) in neural tube patterning and exhibits a genetic interaction with Gli3 in limb development. We show that Tulp3 does not appear to alter expression or processing of Gli3, and we demonstrate that transcriptional regulation of other negative regulators (Rab23, Fkbp8, Thm1, Sufu and PKA) is not affected. We discuss the possible mechanism of action of Tulp3 in Shh-mediated signalling in light of these new data

    Cilia and renal cysts

    No full text
    International audienceAdvances in genomics, bioinformatics and the creation of model organisms have identified many genes associated with polycystic kidney diseases. Historically, these genes were not necessarily associated with ciliopathies, but it appeared that many connections can be made between the cystic kidney disease and function of the primary cilium. Indeed, the proteins encoded by these genes are localized to the cilium itself, to the basal body or are known to regulate the expression and localization of ciliary proteins. The goal of this article is to describe the multiple cellular processes that may lead to the development of renal cysts if they are deregulated. These include changes in proliferation rate, cell polarity or signaling pathways involved in embryonic kidney development. To highlight the role of the primary cilium in cystogenesis, I will discuss several studies investigating the function of ciliary genes and cilia in the kidneys of different model organisms

    The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins.

    No full text
    Sufu (Suppressor of fused) is a negative regulator of the Hedgehog signal-transduction pathway, interacting directly with the Gli family of transcription factors. However, its function remains poorly understood. In the present study, we determined the expression, tissue distribution and biochemical properties of mSufu (mouse Sufu) protein. We identified several mSufu variants of which some were phosphorylated. A yeast two-hybrid screen with mSufu as bait allowed us to identify several nuclear proteins as potential partners of mSufu. Most of these partners, such as SAP18 (Sin3-associated polypeptide 18), pCIP (p300/CBP-cointegrator protein) and PIAS1 (protein inhibitor of activated signal transduction and activators of transcription 1), are involved in either repression or activation of transcription and two of them, Galectin3 and hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1), have a nuclear function in pre-mRNA splicing. We confirmed the mSufu-SAP18 and mSufu-Galectin3 interactions by independent biochemical assays. Using a cell transfection assay, we also demonstrated that mSufu protein (484 amino acids) is predominantly cytoplasmic but becomes mostly nuclear when a putative nuclear export signal is mutated or after treatment of the cells with leptomycin B. Moreover, mSufu is translocated to the nucleus when co-expressed with SAP18, which is normally found in this compartment. In contrast, Galectin3 is translocated to the cytoplasm when it is co-expressed with mSufu. Our findings indicate that mSufu is a shuttle protein that appears to be extremely versatile in its ability to bind different proteins in both the cytoplasm and nucleus

    Hnf1b renal expression directed by a distal enhancer responsive to Pax8

    No full text
    International audienceXenopus provides a simple and efficient model system to study nephrogenesis and explore the mechanisms causing renal developmental defects in human. Hnf1b (hepatocyte nuclear factor 1 homeobox b), a gene whose mutations are the most commonly identified genetic cause of developmental kidney disease, is required for the acquisition of a proximo-intermediate nephron segment in Xenopus as well as in mouse. Genetic networks involved in Hnf1b expression during kidney development remain poorly understood. We decided to explore the transcriptional regulation of Hnf1b in the developing Xenopus pronephros and mammalian renal cells. Using phylogenetic footprinting, we identified an evolutionary conserved sequence (CNS1) located several kilobases (kb) upstream the Hnf1b transcription start and harboring epigenomic marks characteristics of a distal enhancer in embryonic and adult renal cells in mammals. By means of functional expression assays in Xenopus and mammalian renal cell lines we showed that CNS1 displays enhancer activity in renal tissue. Using CRISPR/cas9 editing in Xenopus tropicalis, we demonstrated the in vivo functional relevance of CNS1 in driving hnf1b expression in the pronephros. We further showed the importance of Pax8-CNS1 interaction for CNS1 enhancer activity allowing us to conclude that Hnf1b is a direct target of Pax8. Our work identified for the first time a Hnf1b renal specific enhancer and may open important perspectives into the diagnosis for congenital kidney anomalies in human, as well as modeling HNF1B-related diseases

    Genetic Basis for Developmental Homeostasis of Germline Stem Cell Niche Number: A Network of Tramtrack-Group Nuclear BTB Factors

    Get PDF
    International audienceThe potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8-10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches

    Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model

    No full text
    International audienceHeterozygous mutations in HNF1B cause the complex syndrome Renal Cysts and Diabetes (RCAD), characterized by developmental abnormalities of the kidneys, genital tracts and pancreas, and a variety of renal, pancreas and liver dysfunctions. The pathogenesis underlying this syndrome remains unclear as mice with heterozygous null mutations have no phenotype, while constitutive/conditional Hnf1b-ablation leads to more severe phenotypes.We generated a novel mouse model carrying an identified human mutation at the intron-2 splice donor-site. Unlike heterozygous previously characterized, heterozygous for the splicing mutation exhibited decreased HNF1B protein levels and bilateral renal cysts from embryonic stage E15, originated from glomeruli, early proximal tubules (PT) and intermediate nephron segments, concurrently with a delayed PT differentiation, hydronephrosis and rare genital tract anomalies.Consistently, mRNA-sequencing showed that most down-regulated genes in embryonic kidneys were primarily expressed in early PTs and Henle's Loop and involved in ion/drug transport, organic acid and lipid metabolic processes, while the expression of previously identified targets upon Hnf1b-ablation, including cystic disease genes was weakly or not affected. Postnatal analyses revealed renal abnormalities, ranging from glomerular cysts to hydronephrosis and rarely multicystic dysplasia. Urinary proteomics uncovered a particular profile predictive of progressive decline in kidney function and fibrosis, and displayed common features with a recently reported urine proteome in a RCAD pediatric cohort. Altogether our results show that HNF1B reduced levels lead to developmental disease phenotypes associated with the deregulation of a subset of its targets. They further suggest that this model represents a unique clinical/pathological viable model of the RCAD disease
    corecore