81 research outputs found

    Data concatenation, Bayesian concordance and coalescent-based analyses of the species tree for the rapid radiation of Triturus newts

    Get PDF
    The phylogenetic relationships for rapid species radiations are difficult to disentangle. Here we study one such case, namely the genus Triturus, which is composed of the marbled and crested newts. We analyze data for 38 genetic markers, positioned in 3-prime untranslated regions of protein-coding genes, obtained with 454 sequencing. Our dataset includes twenty Triturus newts and represents all nine species. Bayesian analysis of population structure allocates all individuals to their respective species. The branching patterns obtained by data concatenation, Bayesian concordance analysis and coalescent-based estimations of the species tree differ from one another. The data concatenation based species tree shows high branch support but branching order is considerably affected by allele choice in the case of heterozygotes in the concatenation process. Bayesian concordance analysis expresses the conflict between individual gene trees for part of the Triturus species tree as low concordance factors. The coalescent-based species tree is relatively similar to a previously published species tree based upon morphology and full mtDNA and any conflicting internal branches are not highly supported. Our findings reflect high gene tree discordance due to incomplete lineage sorting (possibly aggravated by hybridization) in combination with low information content of the markers employed (as can be expected for relatively recent species radiations). This case study highlights the complexity of resolving rapid radiations and we acknowledge that to convincingly resolve the Triturus species tree even more genes will have to be consulted

    Constraint and adaptation in newt Toll-like receptor genes

    Get PDF
    Acute die-offs of amphibian populations worldwide have been linked to the emergence of viral and fungal diseases. Inter and intraspecific immunogenetic differences may influence the outcome of infection. Toll-like receptors (TLRs) are an essential component of innate immunity and also prime acquired defenses. We report the first comprehensive assessment of TLR gene variation for urodele amphibians. The Lissotriton newt TLR repertoire includes representatives of 13 families and is compositionally most similar to that of the anuran Xenopus. Both ancient and recent gene duplications have occurred in urodeles, bringing the total number of TLR genes to at least 21. Purifying selection has predominated the evolution of newt TLRs in both long (∼70 Ma) and medium (∼18 Ma) timescales. However, we find evidence for both purifying and positive selection acting on TLRs in two recently diverged (2–5 Ma) allopatric evolutionary lineages (Lissotriton montandoni and L. vulgaris graecus). Overall, both forms of selection have been stronger in L. v. graecus, while constraint on most TLR genes in L. montandoni appears relaxed. The differences in selection regimes are unlikely to be biased by demographic effects because these were controlled by means of a historical demographic model derived from an independent data set of 62 loci. We infer that TLR genes undergo distinct trajectories of adaptive evolution in closely related amphibian lineages, highlight the potential of TLRs to capture the signatures of different assemblages of pathogenic microorganisms, and suggest differences between lineages in the relative roles of innate and acquired immunity

    Functional protein composition in femoral glands of sand lizards (Lacerta agilis)

    Get PDF
    Proteins are ubiquitous macromolecules that display a vast repertoire of chemical and enzymatic functions, making them suitable candidates for chemosignals, used in intraspecific communication. Proteins are present in the skin gland secretions of vertebrates but their identity, and especially, their functions, remain largely unknown. Many lizard species possess femoral glands, i.e., epidermal organs primarily involved in the production and secretion of chemosignals, playing a pivotal role in mate choice and intrasexual communication. The lipophilic fraction of femoral glands has been well studied in lizards. In contrast, proteins have been the focus of only a handful of investigations. Here, we identify and describe inter-individual expression patterns and the functionality of proteins present in femoral glands of male sand lizards (Lacerta agilis) by applying mass spectrometry-based proteomics. Our results show that the total number of proteins varied substantially among individuals. None of the identified femoral gland proteins could be directly linked to chemical communication in lizards, although this result hinges on protein annotation in databases in which squamate semiochemicals are poorly represented. In contrast to our expectations, the proteins consistently expressed across individuals were related to the immune system, antioxidant activity and lipid metabolism as their main functions, showing that proteins in reptilian epidermal glands may have other functions besides chemical communication. Interestingly, we found expression of the Major Histocompatibility Complex (MHC) among the multiple and diverse biological processes enriched in FGs, tentatively supporting a previous hypothesis that MHC was coopted for semiochemical function in sand lizards, specifically in mate recognition. Our study shows that mass spectrometry-based proteomics are a powerful tool for characterizing and deciphering the role of proteins secreted by skin glands in non-model vertebrates

    An initial molecular resolution of the mantellid frogs of the Guibemantis liber complex reveals three new species from northern Madagascar

    Get PDF
    The small arboreal frog Guibemantis liber (Anura: Mantellidae) has served as an example for the existence of deep conspecific lineages that differ by a substantial amount in mitochondrial DNA but are similar in morphology and bioacoustics and thus are assigned to the same nominal species. During fieldwork in northern Madagascar, we identified additional such lineages and surprisingly, observed close syntopy of two of these at various sites. In-depth study based on DNA sequences of the mitochondrial cytochrome b gene from 338 specimens of G. liber sensu lato from across its range, sequences of four nuclear-encoded markers for 154‒257 of these specimens, a phylogenomic dataset obtained by the FrogCap target capture approach, and additional mitochondrial genes for representatives of most mitochondrial lineages, as well as bioacoustic and morphological comparisons, revealed concordant differentiation among several lineages of the G. liber complex. We identify nine lineages differing by 5.3‒15.5% in cytochrome b and 2.4‒10.1% in the 16S rRNA gene, and find that several of these lack or have only limited allele sharing in the nuclear-encoded genes. Based on sympatric or parapatric occurrence without genetic admixture, combined with differences in bioacoustic and morphological characters, we scientifically name three lineages from northern Madagascar as new species: G. razoky sp. nov., G. razandry sp. nov., and G. fotsitenda sp. nov. Of these new species, G. razoky sp. nov. and G. razandry sp. nov. show widespread syntopy across northern Madagascar and differ in body size and advertisement calls. Guibemantis fotsitenda sp. nov. is sister to G. razandry sp. nov., but appears to occur at lower elevations, including in close geographic proximity on the Marojejy Massif. We also detected subtle differences in advertisement calls among various other mitochondrial lineages distributed in the Northern Central East and Southern Central East of Madagascar, but the status and nomenclatural identity of these lineages require further morphological and bioacoustic study of reliably genotyped individuals, and assignment of the three available names in the complex: Rhacophorus liber Peracca, 1893, Gephyromantis albogularis Guibé, 1947, and Gephyromantis variabilis Millot and Guibé, 1951. We discuss the identity and type material of these three nomina, designate a lectotype for Gephyromantis variabilis from Itremo, and flag the collection of new material from their type localities, Andrangoloaka and Itremo, as paramount for a comprehensive revision of the G. liber complex
    • …
    corecore