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The effect of railways on bird diversity in farmland
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Abstract
With a length exceeding 210,000 km in Europe, railways are common linear features dissecting landscapes. However, the impact
of railway networks on biodiversity is equivocal. In this study, we investigated the effect of railway embankments on bird
diversity components in an agricultural landscape in southern Poland. Forty transects including 20 along railways and 20 as
controls in open fields were established. Birds were counted twice in 2009, and environmental characteristics were estimated for
each transect. Ordination techniques and generalized additive models were used to compare species composition, richness,
abundance, conservation status, population trends and phylogenetic and functional diversity indices between railway and field
transects. Species richness and phylogenetic diversity but not abundance nor functional diversity were higher along railway
transects than along field transects. Diversity indices near railways, mostly species richness and phylogenetic diversity, were
positively associated with bush cover, wet meadow cover, wetland cover and the slope of the railway but negatively associated
with dry meadow cover and field cover. Our study shows that railway embankments may be beneficial for bird diversity but
probably do not alter the functional properties of bird communities as much as open fields. Proper management of these linear
habitats may increase their value for birds and contribute to long-term bird community persistence.
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Introduction

Habitat destruction, pollution, agriculture intensification and
invasions of alien species deeply impact biodiversity and the
functioning of ecosystems (McKee et al. 2003; Erwin 2008;
Cardinale et al. 2012; Moroń et al. 2012). Many species are
able to adapt to human-modified environments, but species
unable to respond favourably to these environmental changes

become extinct, or their populations diminish (Erwin 2008;
Miraldo et al. 2016). With declining species richness and
abundance, species-specific characteristics as well as all com-
munities may be disturbed. Thus, the loss of species diversity
is associated with alterations in phylogenetic and functional
diversity (Pan et al. 2016).

In landscapes dominated by human activity, linear struc-
tures are among the key factors affecting animal and plant
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population functioning (Forman et al. 2003; Benítez-López
et al. 2010). A linear structure is any elongated landscape
feature (a verge, embankment, hedge, tree and/or bush row,
ditch) which is usually situated along a transportation line (a
road or railway track), differs from adjacent habitat and diver-
sifies the landscape. The role of linear structures is ambiguous,
with prevailing reports of their negative impact on biodiversi-
ty (Borda-de-Água et al. 2017; Barrientos et al. 2019), and
there is a substantial disproportion in the number of studies
concerning effects of roads rather than railways (Popp and
Boyle 2017). The presence of transportation lines in a land-
scape seems to be an obvious barrier for low-mobility organ-
isms leading to the fragmentation of populations (Andrews
1990; Fahrig 2003), emergence of edge effects (Forman
et al. 2003) and decline in genetic variation (Balkenhol and
Waits 2009; Holderegger and Di Giulio 2010). Several animal
species avoid crossing transportation lines (Ries and Debinski
2001; Skórka et al. 2013a) because dispersal and movement
pose increased mortality risk (Nowicki et al. 2014; Skórka
et al. 2013b). Road and railway mortality affect both good
dispersers such as birds and mammals (Benítez-López et al.
2010; Karlsson et al. 2007; Silva et al. 2012) and poor dis-
persers such as small-bodied herpetofauna (Fahrig and
Rytwinski 2009; Santos et al. 2017) and insects (Askling
and Bergman 2003; Tamayo et al. 2015; Skórka et al.
2013b). Moreover, transportation lines may work as ecologi-
cal traps by attracting organisms preferring bare, warm sur-
faces (Stevens et al. 2006) or by trapping organisms between
rails without access to water and food (Budzik and Budzik
2014, but see Kaczmarski and Kaczmarek 2016).

However, linear structures do not only affect population
functioning and biodiversity negatively. An example of a pos-
itive effect is wheel ruts serving as important habitats for some
amphibians (Babik and Rafiński 2001; Cayuela et al. 2015).
Birds may use linear structures as breeding habitat due to their
lower predatory pressure, higher temperature and larger num-
ber of food items, including road-killed ones (Mumme et al.
2000; Morelli 2013; Morelli et al. 2014; Heske 2015; but see
Vierling (2000) which revealed sink effect of roadside
ditches). Despite a lot of casualties (Carvalho et al. 2017;
Godinho et al. 2017a; Lucas et al. 2017; Murias et al. 2017;
Santos et al. 2017), some animal groups such as raptors and
scavengers may be highly dependent on road habitats as
sources of food (Benítez-López et al. 2010; Coleman and
Fraser 1989). Linear structures change local abiotic condi-
tions, leading to the emergence of strong environmental gra-
dients that may increase the availability of niches and thus
increase species diversity (Amarasekare 2003; Nord and
Forslund 2015). Previous studies revealed that a landscape
mosaic ensures persistence and higher abundances of rare
and endangered species (Atauri and de Lucio 2001; Pöyry
et al. 2005; Kajzer-Bonk et al. 2016). In homogenous agricul-
tural landscapes, linear structures may contribute to landscape

complexity (Morelli et al. 2015; Villemey et al. 2018). The
presence of verges, embankments or ditches alongside roads
and railways provides a diversity of trees, bushes and herba-
ceous plants, whichmay include a significantly higher number
of native plants compared to surrounding areas (Forman et al.
2003; Deckers et al. 2005) and provide habitat for many pol-
linating insects (Skórka et al. 2013b; Moroń et al. 2014). In
homogenous intensive agricultural landscapes, such features
may be the only locations where species survive (Wynhoff
et al. 2011). Van Geert et al. (2010) and Moroń et al. (2017)
revealed that such linear habitats may function as biological
corridors by facilitating the dispersal of insects and insect-
pollinated plants. Railway embankments may increase the al-
pha diversity and community turnover of invertebrates and
plant taxa (Moroń et al. 2014, 2017; Vandevelde and Penone
2017). From four studied linear structure types (roads, rail-
ways, transportation bridges and rivers) railways were re-
vealed as the most permeable for songbirds movements
(Tremblay and Clair 2019).

Despite an increasing number of findings concerning
railway ecology, it is relatively novel discipline with over-
whelming number of research reporting negative effects on
biodiversity (Barrientos and Borda-de-Água 2017;
Godinho et al. 2017a; Malo et al. 2017; Murias et al.
2017; Santos et al. 2017; Barrientos et al. 2019) and effects
of railways on bird biology and bird communities are
rarely studied. For example, Popp and Boyle (2017) found
altogether 3 vs. 62 papers concerning railway and road
effects on birds, respectively. The high diversity of plants
and invertebrates on railway embankments (Moroń et al.
2014) suggests that such locations have a rich food base
attractive for birds. Railway proximity decreases vigilant
behaviour of snowfinches (Ge et al. 2011) and increases
the abundance of seven ground-dwelling bird species in
Tibet (Li et al. 2010). Electrical lines and pylons associated
with railways may act as substitutes for some natural ele-
ments (e.g. old trees) that may be perching, singing and
resting sites but are currently frequently removed from ag-
ricultural landscapes (Morelli et al. 2014; Tryjanowski
et al. 2014; but see Carvalho et al. 2017). Moreover, train
traffic is usually much lower than road traffic, suggesting
low vehicle-related mortality (Morelli et al. 2014). Thus,
railway embankments may be suitable habitats for birds,
especially in altered, homogenous agricultural landscapes.

The aim of this study was to compare bird diversity and
community composition along railway line transects and con-
trol transects located in agricultural landscapes. We hypothe-
sized that linear structures along railways may reinforce spe-
cies diversity in the landscapes. Specifically, we predicted that
an agricultural landscape with a railway would have a more
diverse bird community in terms of (1) taxonomy, (2) phylog-
eny, (3) functionality and 4) conservation status than would a
landscape without railways.
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Materials and methods

Study area

The study was conducted in 2009 in the Małopolska region in
southern Poland. Data were collected in an agricultural land-
scape along 40 randomly selected transects 1 km long and 50
m wide located at least 2 km away from each other (Fig. 1).
Twenty of the transects were situated along the railway, and
the remaining 20, in landscapes similar in terms of use but
without railways. Two surveys during the breeding season
(first in May and following in June) in early morning and in
fine weather conditions (no strong wind or rain) were per-
formed to assess bird occurrence and abundance. Survey
was conducted by one observer walking along a transect with
a velocity of 2 km/h and counting visible and/or singing birds
in a 50-m buffer, including specimens flying over at low alti-
tude (below 50 m), e.g. foraging swallows and gulls and ex-
cluding birds flying high above transects (> 50 m) in a direc-
tional way (vagrants, migrants). There was a balance in terms
of survey order: transects were equally sampled during differ-
ent times of the morning. It took three days to complete one
survey. Bird counts within a survey were done during consec-
utive days. Surveys usually started an hour since sunrise and
ended at 11 a.m. Along each transect, the cover of land types
(meadows, arable fields, buildings, wetland, fallow land, and
trees/bushes) in a 50-m buffer, slope, transect cardinal direc-
tion and “food availability index” expressed as the number of
butterflies which is potentially a good predictor of bird rich-
ness and abundance (Skórka et al. 2010) were assessed. Both
adult butterflies and their larvae are important food for many

bird species (e.g. Marciniak et al. 2007). Even passerine birds
from true finch (Fringillidae) and bunting (Emberizidae) fam-
ilies, which are adapted to eating seeds, feed their offspring
with high-protein food composed mainly of insects, including
caterpillars and imagoes of butterflies (Holland et al. 2006).
Abovementioned variables were estimated using two 25-m-
width belts on both sides of the transect and the percent cover
of each predictor was quantified every 200 m. The crops were
low (up to a 1-m height) and there dominated cereals (wheat,
rye, oat), root crops (potatoes), oil crops (rapeseed) and veg-
etables (cabbage, parsley, tomatoes) and did not preclude vis-
ibility in both in railway and control field transects. There was
no cornfield in the area during our study. Railway transects ran
exactly on track and buffer describing landscape type exclud-
ed area of railway track. There were no additional linear struc-
tures in control transects (i.e. roads with associated wind-
breaks). This procedure ensured focusing on railway effect
only. Additionally, forest cover in a 500-m radius of each
transect as only non-open habitat diversifying agricultural
landscape was measured using aerial photographs acquired
from Google Earth program and ImageJ software (Abramoff
et al. 2004).

Data handling

Nine measures of bird diversity were calculated separately for
each transect: three related to taxonomic diversity and distri-
bution, two related to phylogenetic diversity and four related
to functional diversity. Additionally, we calculated two indices
of conservation status.

Fig. 1 Map of the study area.
Locations of railway and control
transects (black and empty dots,
respectively), and railways (solid
lines) are shown
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Species richness, total abundance and a commonness index
were taxonomic diversity indices. The maximal number of
recorded bird species and individuals over two surveys along
each transect were proxies of species richness and abundance .
The commonness index was the average total population size
in Poland estimated for each species and averaged over the
species recorded along a given transect. Population estimates
for the years 2008–2012 were used (Chodkiewicz et al. 2015).

Two indices of phylogenetic diversity were used: Faith’s
standardized phylogenetic distance between taxa and their
evolutionary distinctiveness (Frishkoff et al. 2014; Isaac
et al. 2007). These indices were independent of the number
of species. The bird phylogenetic tree (Jetz et al. 2012) was
built online (http://birdtree.org; Fig. S1 in Supplementary
material 1) and it was used to calculate the phylogenetic
diversity indices via the package “picante” (Kembel et al.
2010) in R (R Core Team 2017).

Four indices of functional diversity were used: functional
richness, functional evenness, functional divergence and func-
tional dispersion. These metrics are based on species traits and
describe the functional dimension of biodiversity (de Bello
et al. 2010). We used avian traits linked with life histories,
breeding, foraging and dispersal biology (Huang et al. 2015;
Morelli et al. 2017; Storchová and Hořák 2018, Table S1).
Functional diversity is related to taxonomic diversity and of-
ten predicts community assembly rules (e.g. productivity and
resistance to disturbance) better than does species richness
(Mouchet et al. 2010). Traits used in the calculations were
coded as 39 variables (Table S1 contains all variables and
the levels considered for each): body mass, brain mass, sexual
dimorphism, lifespan, clutch size, age at first reproduction,
incubation time, number of broods per year, mean egg mass,
length of incubation period (days), length of fledging period
(days), life span, migration mode (long-distance migrant,
short-distance migrant, facultative migrant, sedentary), food
categories (frugivore, folivore, granivore, invertebrates, fish,
omnivore or carrion), mode of development (precocial, semi-
precocial, semi-altricial, or altricial) and sociality during the
breeding season (solitary, semi-colonial, or colonial). Sexual
dimorphism, development and migration modes, food catego-
ries and sociality were coded as categorical binary variables
(e.g. whether a species was colonial was coded as either 0 or
1). This approach allowed us to include plasticity in species
traits (e.g. the rook, Corvus frugilegus, forages on both arthro-
pods and seeds of various plants, (Czarnecka and Kitowski
2010)) in the analyses. Functional richness was calculated as
the volume of a multidimensional space with traits of species
in their assemblage (Villéger et al. 2008). Functional evenness
represented the uniformity of the species abundance distribu-
tion across the volume of characteristics. Functional diver-
gence expressed the extent to which species abundances were
on the limits of the functional space after accounting for the
functional richness (Villéger et al. 2008; Mouchet et al. 2010).

If the most abundant species have dissimilar traits then they
weakly compete and thus functional divergence has high
values. Functional dispersion shows the spread or variability
in the presence of species and is less sensitive to outliers and
independent of species richness (Laliberté and Legendre
2010). The functional diversity indices were weighted by spe-
cies abundance. We calculated these indices in the “FD” pack-
age of R (Laliberté et al. 2015).

Two indices of conservation status were used: a modified
category of IUCN conservation status (IUCN 2018) and the
proportion of declining species. To calculate the mean IUCN
category, we used the following scale: 1—species of least
concern with an increasing population size, 2—species of
least concern with a stable population size, 3—species of least
concern with a decreasing population size, 4—species of least
concern with an unknown population trend, 5—near-threat-
ened species (with a decreasing population size), and 6—
vulnerable species (with a decreasing population size). There
were no species considered endangered or critically endan-
gered. Each species in a community was scored, and the mean
value for each habitat was calculated.

To calculate the proportion of declining species, we used
IUCN data (IUCN 2018). Each species was scored based on
whether its population size is decreasing or increasing/stable
(scored 1 and 0, respectively; Table S2 in Supplementary
material 1). The number of declining species divided by the
total number of species recorded along a given transect was
used in the analyses.

Statistical analysis

Bird species composition and abundance between railway line
and field control transects were compared by using non-metric
multidimensional scaling (NMDS) implemented in the “veg-
an” package (Oksanen et al. 2013) in R. We compared the
distribution of loadings of abundance counts along the first
three NMDS axes and the statistical significance with the per-
mutation test (999 permutations). Permutational multivariate
analysis of variance (PERMANOVA) was used to find differ-
ences in centroids and dispersion of the groups representing
two habitats. Moreover, we identified species that were char-
acteristic of railway line and control transects in farmland by
using Indicator Species Analysis in the “indicspecies” pack-
age (de Caceres and Legendre 2009) in R. The strength of
association between species and habitat type was checked by
the permutation test (999 permutations).

We compared the nine measures of bird diversity and two
metrics of conservation status between railway and farmland
transects. We used generalized additive models (GAMs) with
Poisson (species richness), negative binomial (bird abun-
dance) and Gaussian (the remaining indices) error distribu-
tions implemented in “mgcv” package (Wood 2006) in R (R
Core Team 2017). In the GAMs, geographical latitude and
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longitude were fitted as the interaction of regression splines to
control for the spatial autocorrelation of the dependent vari-
ables (Wood 2006). We used GAMs to test for effects of the
environmental variables on biodiversity indices and bird con-
servation status near railway lines. The ten studied environ-
mental variables were the cover (measured in a 50-m buffer)
of arable fields, dry meadows, wet meadows, fallow land,
wetland, buildings and bushes; forest cover within 500 m;
slope of the embankments; “food availability index” and car-
dinal direction of the line. There were significant correlations
between the continuous explanatory variables (Fig. S1 in
Supplementary material 1). Thus, we used a principal compo-
nent analysis (PCA) with varimax rotation to transform the 10
continuous variables into four orthogonal components (Fig.
S1 in Supplementary material 1). Associations between the

four extracted components and original explanatory continu-
ous variables are given in Table 1. The four extracted compo-
nents and cardinal direction of the railway transect (E, N, NE
and NW) were thereafter used in the additive models.

Results

In total, we recorded 1 644 individuals of 67 bird species
along the railway and farmland control transects (Table S2).
Altogether, 18, 17, 27, 2, 2 and 1 species were found in each
category of IUCN status, ordered with increasing vulnerability
(see methods for more details and Table S2 in Supplementary
material 1). Along the railway transects, 58 species (923 indi-
viduals) were recorded, and 50 species (721 individuals) were
recorded along control transects (Table S2). The most com-
mon species was the starling Sturnus vulgaris, with 290 indi-
viduals, followed by the skylark Alauda arvensis, with 193
individuals, and the common whitethroat, Sylvia communis,
with 72 individuals. The NMDS analysis (non-metric fit R2 =
0.954, stress = 0.190) showed that the bird community near
railway lines was significantly different (PERMANOVA F =
5.863; df = 1, 39; P = 0.005, R2 = 0.15) from that recorded
along control field transects: the two point clouds representing
the two transect types showed little overlap (Fig. 2). In total,
17 species were present only along railway transects, while
nine species were present only along field control transects
(Table S2).

Seven species were characteristic of railways as it was re-
vealed by the Indicator Species Analysis. These species were:
the common stonechat, Saxicola torquatus (rubicola) (esti-
mate = 0.879, P < 0.001); the common whitethroat, Sylvia

Table 1. Principal component analysis (PCA) based on the 10 contin-
uous explanatory variables. Loadings higher than 0.4 are in italic

Variable PCA1 PCA2 PCA3 PCA4

Bush cover − 0.576 − 0.627 − 0.009 0.248

Dry meadow cover 0.656 0.005 − 0.629 0.287

Wet meadow cover − 0.764 0.067 − 0.162 − 0.433

Field cover 0.626 0.350 0.631 − 0.009

Wetland cover − 0.808 0.108 − 0.049 − 0.254

Building cover 0.308 − 0.566 − 0.127 − 0.664

Fallow land cover 0.385 − 0.019 0.472 − 0.441

Slope − 0.744 0.507 0.251 0.170

Food availability index 0.029 0.696 − 0.434 − 0.274

Forest cover in a 500 m radius − 0.306 − 0.303 0.310 0.221

Variance explained (%) 33 17 14 12

Fig. 2 Dissimilarities between
bird communities along railway
line (yellow) and farmland control
(blue) transects depicted via
kernel density estimates of site-
specific scores of species along
the two first axes from the non-
metric multidimensional scaling
(NMDS) analysis. Sizes of
species labels are proportionally
scaled to the total abundance of
the species and are explained in
Table S1
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communis (estimate = 0.797, P = 0.001); the common chaf-
finch, Fringilla coelebs (estimate = 0.617, P = 0.021); the
golden oriole Oriolus oriolus (estimate = 0.609, P = 0.029);
the common chiffchaff, Phylloscopus collybita (estimate =
0.548, P = 0.022); the mallard, Anas platyrhynchos (estimate
= 0.500, P = 0.048); and the common reed bunting, Emberiza
schoeniclus (estimate = 0.500, P = 0.048). Only one species,
the common quail, Coturnix coturnix (estimate = 0.586, P =
0.021), was selected as an indicator species for the field con-
trol transects.

Compared to the control transects, the railway transects
hosted a higher number of species but a similar abundance
of birds (Fig. 3, Table 2). Species occurring along both tran-
sect types were similarly common in Poland (Fig. 3, Table 2).

Faith’s standardized phylogenetic diversity and evolutionary
distinctiveness were higher along railway transects than along
farmland transects (Fig. 3, Table 2). All examined functional
diversity indices had similar values in railway and field tran-
sects (Fig. 3, Table 2). However, the conservation status mea-
sured as mean IUCN category and the proportion of declining
species were lower along railway line transects than along
control field transects (Fig. 4, Table 2).

Additive models showed that species richness was nega-
tively correlated with PCA1 (and thus positively correlated
with bush cover, wet meadow cover, wetland cover and the
slope of the railway but negatively correlated with dry
meadow cover and field cover, Table 3). The abundance of
birds was negatively correlated with PCA2 (and thus positively

Fig. 3 The comparison of nine bird diversity indices between railway
(yellow) and farmland (blue) transects. Boxplots show means
(horizontal lines) and 95% confidence intervals (rectangles). The

density of points (violins) is also shown. Graphs for abundance and
functional richness have a logarithmic y-axis. Explanations: n.s.
statistically non-significant difference

Environ Sci Pollut Res (2019) 26:31086–31098 31091



correlated with bush cover and building cover but negatively
correlated with slope and the food availability index), PCA3
(and thus positively correlatedwith drymeadow cover and food
resources but negatively correlated with field cover and fallow
land cover) and PCA4 (and thus positively correlated with wet
meadow cover, fallow land cover and building cover, Table 3).
The effects of environmental variables on Faith’s standardized
phylogenetic diversity and evolutionary evenness were similar
to that on species richness (Table 3). Not one environmental
variable was associated with the commonness index nor with
the functional diversity indices (Table 3). Mean IUCN category
was negatively associated with PCA4 (and thus positively as-
sociated with wet meadow cover, fallow land cover and build-
ing cover (Table 3). The proportion of declining species was
positively correlated with PCA1 (and thus negatively correlated
with bush cover, wet meadow cover, wetland cover and the
slope of the railway embankment but positively correlated
with dry meadow cover and field cover, Table 3). The propor-
tion was also lower along railway lines directed N-S than along
those oriented E–W (Table 3).

Discussion

Our study revealed that species richness was higher
among railway embankments than along control transects.
Consistently, phylogenetic diversity also was higher near
railways than in open fields. These results suggest that
railways increase taxonomic and phylogenetic richness
in agricultural landscapes. This result may be due to the
difference in habitat composition, where railway
embankments—as important remnants of diverse
vegetation—make landscapes locally more of a mosaic
and increase the number of available niches in

predominantly agricultural landscapes (Coffin 2007;
Heikkinen et al. 2004). The ecological role of railways
is strongly understudied (Popp and Boyle 2017) despite
the fact that the global network of railways is over 1
b i l l i on km long (18 429 km long in Po l and ;
International Union of Railways 2015). To date, several
studies investigated the effect of railways on bird abun-
dance and richness. There were no differences in wetland
bird richness and abundances between study plots adja-
cent to and far from railways (Godinho et al. 2017b).
Similar to our findings, Li et al. (2010) and Wiącek
et al. (2015) revealed a higher number of birds in railway
proximity compared with control points located far from
railways. Some birds habituate and ignore railways prob-
ably because railway verges are attractive, increase het-
erogeneity in homogenous landscape and noise is discon-
tinuous compared with roads (Lucas et al. 2017). As far as
other taxa are concerned, several studies have shown (1) a
negative effect of railroad due to habitat fragmentation
and mortality of large mammals (Ito et al. 2005; Waller
and Servheen 2005; Santos et al. 2017), limitation of gene
flow in amphibians (Bartoszek and Greenwald 2009) and
disturbance (Barrientos et al. 2019); (2) positive effect of
railways on pollinator diversity (Moroń et al. 2014) and
dispersal (Moroń et al. 2017) as well as (3) a neutral
effect on dispersing amphibians (Kaczmarski and
Kaczmarek 2016). These results confirm that such
human-constructed environments, at least in some cases,
may not be harmful or may even be beneficial for biodi-
versity and should not be neglected in modern nature
conservation (Martínez-Abraín and Jiménez 2016;
Maclagan et al. 2018).

As our studied transects were located in agricultural land-
scapes, the potential moderation of functional diversity by

Table 2 The formal tests (generalized additive models) comparing bird
diversity components and bird conservation status between railway and
farmland transects. Estimates with standard errors (in brackets), test

statistic (chi-square for species richness and abundance, F otherwise),
variance explained (R2

adj), and P values are given. Statistically
significant differences have italic P values

Explanatory variables Intercept Transect type: railway* Statistic R2
adj P

Species richness 2.578 (0.061) 0.282 (0.081) 12.11 0.48 < 0.001

Abundance 3.509 (0.095) 0.214 (0.133) 2.591 0.37 0.107

Commonness index 2242.1 (111.0) − 163.8 (160.3) 1.045 0.03 0.314

Faith’s phylogenetic diversity − 0.606 (0.257) 0.983 (0.364) 7.265 0.44 0.011

Evolutionary distinctiveness 6.232 (0.441) 1.616 (0.626) 6.664 0.43 0.014

Functional richness 151.630 (40.090) − 28.350 (69.630) 0.166 0.17 0.686

Functional evenness 0.648 (0.016) 0.020 (0.023) 0.738 0.04 0.396

Functional divergence 0.680 (0.012) 0.024 (0.017) 1.847 0.02 0.183

Functional dispersion 4.615 (0.128) − 0.023 (0.184) 0.016 0.28 0.899

IUCN conservation category 2.541 (0.046) − 0.254 (0.066) 14.910 0.25 < 0.001

Proportion of declining species 0.611 (0.022) − 0.139 (0.032) 19.300 0.30 < 0.001

*Control transects in farmland were the reference category, i.e. control = 0
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railways would be more interesting than that of simple taxo-
nomic diversity. Functional diversity is broadly assumed to be
a better predictor of ecosystem productivity and vulnerability
than is species diversity (Schleuter et al. 2010). However,
there were statistically non-significant differences in all indi-
ces of functional diversity between railway transects and open
fields, meaning that niches in both types of studied habitats
were filled by species with similar features. Also, the abun-
dance of species was similarly distributed in the volume of
traits, as indicated by functional divergence and evenness. The
lack of differences in functional diversity may stem from
proximity and location of control and railway transects in
the same agricultural landscape with similar environmental
properties. We may not also exclude the possibility that spe-
cies potential overlapping due to bird fly-overs; however, this
effect was probably negligible because only few species such
as swallows and gulls exhibited such mobile behaviour. It
seems that railways do not introduce new functional properties
into agricultural landscapes, but they also do not diminish
existing properties, which is also worth noting in light of stud-
ies demonstrating the opposite effects in other linear man-
made habitats (Fahrig and Rytwinski 2009; Morelli et al.

2015). The effect may also depend on the landscape context.
It is possible that in areas with more intense agriculture, the
differences in functional diversity would be higher.

Our study indicates that there are some potential ways to
manage environmental variables along railway lines to in-
crease the diversity of birds, especially taxonomic and phylo-
genetic components of their diversity. The most important
factors seem to be the presence of bushes/trees, wetlands
and wet meadows next to railways. These variables are gen-
erally known as important landscape components enhancing
bird abundances and species richness (Heikkinen et al. 2004;
Riffell et al. 2003). The good conditions/quality of these hab-
itats as well as the continuous loss of these habitats cause all
their remnants to be important for birds. Further, the presence
of buildings appeared to improve bird diversity. Rural build-
ings, especially old houses and farmsteads, provide food, shel-
ters and breeding sites for many farmland birds, as was recent-
ly observed in Central Europe (Rosin et al. 2016; Šálek et al.
2018). The fields and dry meadows decreased bird diversity.
This result is consistent with previous studies that revealed
that at dry forest edges, even farmland birds prefer fallow
lands to fields (Berg and Pärt 1994; Heikkinen et al. 2004).
Surprisingly, geographical direction was also an important
factor influencing patterns of bird diversity (Table 3). This
result may be linked to the relationship between railways
and insulation during the day and thus temperatures that
may affect the habitat preferences of birds (Nawaz Pajpar
and Zakira 2015).

Our findings on bird diversity components along railways
are put in a different context when the conservation status of
birds is concerned. At first, it seems that the taxonomic and
phylogenetic diversity of rather common, non-threatened spe-
cies increase along railway embankments compared to control
sites (Fig. 3a). Man-made alterations generally lead to the
homogenization and trivialization of nature (Marzluff 2001),
and previous studies showed that human infrastructure has a
neutral effect on more flexible, rather common and broadly
distributed species, whereas rare specialists are currently the
most negatively affected (Slabbekoorn and Ripmeester 2008).
However, in our study, the number of detected decreasing
species (IUCN classification) was the same for railway and
control transects (n = 25). The differences in bird composition
between the two landscape types may be due to a higher over-
all number of species, including six “additional” species with
a status of “increasing” along railway transects (17) compared
to control transects (11) and two more species with a status of
“stable” or “unknown” in the former than in the latter. Thus,
this result suggests that railway embankments enhance the
diversity of birds, mainly those that are more flexible, but
not at the expense of the declining species. Maintaining the
landscape mosaic is very important for birds (Heikkinen et al.
2004) and may be important for some rare species associated
with open habitats. It may be suspected that the bird diversity

Fig. 4 The comparison of conservation indices between railway (yellow)
and farmland (blue) transects. Explanations: see Fig. 3
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indices correlate with IUCN status. However, a review of
Pimm et al. (2014) shows that overall and threatened bird
distribution does not overlap worldwide. When we repeated
analysis testing differences in IUCN status between railway
and field transects with the number of species as a covariate,
then the number of species was meaningful predictor however
was negatively correlated with IUCN status (beta = − 0.018 ±
0.008, P = 0.030). The differences between transect types
remained statistically significant (beta for railway transects =
− 0.174 ± 0.072, P = 0.020; intercept = 2.78 ± 0.117).

As the IUCN categories concern the whole distributions of
species and may not perfectly capture the circumstances in
Poland (relatively low pressure of development and infrastruc-
ture in 2009 compared to some other parts of Europe), we
decided to also use local measures of population trends. The
second measure of “rarity”, with population size estimates for

Poland, revealed that there was no difference in species “rar-
ity” between railway and control transects.

Study constraints

Our study revealed a positive impact of linear structures on
bird diversity, but these results should be interpreted with
some caution. It should be stressed that this study concerned
the impact of railways on bird presence/abundance only and
not on their possible breeding success or abundance reduction
due to possible collisions. Birds, especially young, inexperi-
enced birds, may be attracted by potential food resources to
roadsides that expose them to increased vehicle-related mor-
tality (Erritzoe et al. 2003; Hell et al. 2005). However, the
frequency of traffic volume, which is approximately 100 times
higher on roads than on railways, and the noise alerting birds

Table 3 The effect of environmental variables on bird diversity and
conservation indices near railway lines. Generalized additive model
estimates of slopes of functions and their standard errors (in brackets)

are presented. Statistically significant effects are italic: ***P < 0.001,
**P < 0.01, and *P < 0.05. See also Table 1 for an explanation of the
principal components (PCA1–PCA4) used in these analyses

Models for: Explanatory variables

Intercept PCA1 PCA2 PCA3 PCA4 Cardinal direction R2
adj

Species richness 2.38 (0.26)*** − 0.16 (0.07)* − 0.02 (0.08) 0.02(0.05) 0.01 (0.05) N = 1.01 (0.54)
NE = 0.84 (0.46)
NW = 0.82 (0.50)

0.82

Abundance 2.03 (0.47)*** − 0.01 (0.07) − 0.23 (0.08)** − 0.14
(0.04)***

− 0.11 (0.05)* N = 3.17 (0.93)***
NE = 3.40 (0.92)***
NW = 3.01 (0.93)**

0.90

Commonness 2603.81
(579.39)**

228.08
(125.29)

− 156.07
(163.4)

81.61 (96.90) 30.31 (107.50) N = − 1007.5 (1214.6)
NE =− 942.9 (1103.4)
NW = − 1021

(1182.9)

0.17

Phylogenetic diversity − 2.16 (0.72)* − 0.73
(0.19)**

− 0.02 (0.25) 0.14 (0.15) 0.17 (0.17) N = 5.28 (1.57)**
NE = 4.66 (1.30)**
NW = 4.83 (1.48)**

0.79

Evolutionary distinctiveness 4.45 (1.13)** − 1.13
(0.29)**

− 0.04 (0.39) 0.24 (0.23) 0.29 (0.26) N = 6.87 (2.46)*
NE = 6.35 (2.03)*
NW = 6.49 (2.32)*

0.84

Functional richness 101.65 (200.32) − 23.84
(52.03)

− 19.05 (41.81) − 9.94 (46.11) − 9.94 (46.11) N = − 25.09 (438.2)
NE = 124.41 (362.16)
NW = − 12.21

(412.23)

0.00

Functional evenness 0.65 (0.07)*** − 0.01 (0.02) 0.01 (0.02) 0.02 (0.1) − 0.01 (0.01) N = 0.08 (0.15)
NE = − 0.02 (0.12)
NW = 0.05 (0.14)

0.00

Functional divergence 0.81 (0.07)*** − 0.00 (0.01) 0.01 (0.01) 0.02 (0.01) − 0.01 (0.01) N = − 0.20 (0.14)
NE = − 0.24 (0.14)
NW = − 0.22 (0.15)

0.19

Functional dispersion 3.98 (0.59)*** − 0.05 (0.15) − 0.19 (0.21) 0.03 (0.12) − 0.20 (0.14) N = 1.06 (1.29)
NE = 1.45 (1.07)
NW = 1.21 (1.22)

0.27

IUCN conservation category 2.41 (0.12)*** 0.02 (0.03) 0.05 (0.04) 0.03 (0.03) − 0.10
(0.03)**

N = − 0.39 (0.26)
NE = 0.06 (0.22)
NW = − 0.24 (0.25)

0.58

Proportion of declining
species

0.61 (0.06)*** 0.04 (0.02)* 0.02 (0.02) 0.03 (0.01) − 0.01 (0.01) N = − 0.35 (0.13)*
NE = − 0.18 (0.11)
NW = − 0.29 (0.13)*

0.51
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seem to be crucial differences between railway and roadway
transportation. In Poland, the average traffic volume is 500
vehicles per hour for regional roads (the most frequent type
of road) (Opoczyński 2016) and 3–5 trains per hour (source:
http://pkpsa.pl). Traffic volume is a main driver of population
persistence (Jaeger et al. 2005), and songbirds are able to
avoid trains more effectively than they are able to avoid cars
(Heske 2015). The effect of railway embankment noise on
singing birds and their territories may be lower than that of
roads, and the effect of light pollution on moving/migrating
birds near railway embankments may be much lower than that
near roads (Glista et al. 2009). Moreover, a study on amphib-
ians, which are much poorer dispersers, revealed that they are
able to avoid danger in tram tracks (Kaczmarski and
Kaczmarek 2016). Therefore, it may be expected that railways
may be less harmful than roads, however further research is
needed to investigate this problem.

Management implications

To maintain high species richness, railway embankments
should contain a mosaic of bushes, trees and wet habitats.
Our results seem to be especially important given the Polish
Infrastructure Ministry regulation commanding that all bushes
and trees be cleared from railway embankments in 15-m-
broad strips (Grabarczyk 2008). This leads to extensive habi-
tat destruction, with 250 000 trees cleared from railway em-
bankments in 2015 alone (Gurgul 2016). The argument of
security reasons seems to be misused compared to the far less
restrictive standards of other European countries (3 and 5 m in
Great Britain and Germany, respectively) with higher train
traffic and speed (Anonym 2016). As our study shows, prop-
erly managed embankments may be great collateral habitats
for a variety of birds. We thus recommend reducing tree and
shrub cleaning to only those that are truly dangerous for trans-
portation. On the other hand, the density of shrubs may neg-
atively affect the number and abundance of bees (Moroń et al.
2014). Hence, to preserve the diversity of different groups, it
seems reasonable to maintain a mosaic of trees and open hab-
itats (especially wet fragments) along railway embankments.

Conclusions

This study is recognizing railway embankments as potentially
important man-made habitats for bird diversity. We revealed a
positive effect of railway embankments on bird community
composition and richness and the maintenance of phylogenet-
ic diversity. However, the higher proportion of endangered
and declining species recorded along control field transects
indicates that the contribution of railways to taxonomic and
phylogenetic diversity is achieved through attracting, for the
most part, common species that do not increase functionality

in agricultural landscapes to a value substantially greater than
that in open fields. However, earlier findings that railway em-
bankments are important habitats for other organisms provid-
ing ecosystem services (pollinating insects and plants) suggest
that this type of man-made habitat may be used to increase
habitat heterogeneity and species conservation, which may be
achieved through the appropriate management of railway
embankments.
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