493 research outputs found

    The pathological effect of the Bordetella dermonecrotic toxin in mice

    Get PDF
    The effect of dermonecrotic toxin (DNT) expression of Bordetella bronchiseptica was studied in mice by comparing the pathology induced by a wild type strain with that induced by an isogenic DNT- strain in which part of the structural gene has been replaced by an antibiotic resistance cassette. While extracts of strain B58 proved toxic in intravenously inoculated mice, similar extracts from strain B58GP had lost toxic activity. The parent (B58) and the mutant (B58GP) strains of B. bronchiseptica each possessed comparable virulence for mice. These findings confirmed that DNT production was successfully abolished in strain B58GP while other virulence characteristics required for pathogenicity in mice remained intact, at a comparable level to the parent strain. Turbinate atrophy was observed in mice infected with the DNT+ strain, but not in those infected with the DNT-strain. This indicates that DNT is the cause of turbinate atrophy in the mice and not other factors produced by phase I strains of B. bronchiseptica. B. bronchiseptica DNT showed a lienotoxic effect (lymphocyte depletion and a reduction in the intensity of extramedullar haemocytopoieis) that is considered to adversely alter the immune function of the host animal. In mice infected with strain B58GP, catarrhal pneumonia with characteristic lympho-histiocytic peribronchial and perivascular infiltration was noticed. In mice infected with strain B58, large necrotic areas were seen surrounded by an inflammatory reaction. The DNT appears to directly damage lung tissues, at least in mice. DNT production seems to enhance the establishment of B. bronchiseptica in the lungs, presumably by reducing the local resistance and causing severe local damage to the lung tissues

    Diurnal Variation in repeated sprint performance cannot be offset when rectal and muscle temperatures are at optimal levels (38.5 C)

    Get PDF
    The present study investigated whether increasing morning rectal temperatures (Trec) to evening levels, or increasing morning and evening Trec to an “optimal” level (38.5°C), resulting in increased muscle temperatures (Tm), would offset diurnal variation in repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.0 ± 2.3 years, maximal oxygen consumption (V̇O2max) 60.0 ± 4.4 mL.kg–1 min–1, height 1.79 ± 0.06 m, body mass 78.2 ± 11.8 kg]. These included control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, in 39–40°C water) until Trec reached evening levels; two “optimal” trials in the morning and evening (M38.5 and E38.5, in 39–40°C water) respectively, until Trec reached 38.5°C. All sessions included 3 × 3-s task-specific warm-up sprints, thereafter 10 × 3-s RS with 30-s recoveries were performed a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up periods. Values for Trec and Tm at rest were higher in the evening compared to morning values (0.48°C and 0.69°C, p < 0.0005). RS performance was lower (7.8–8.3%) in the M for distance covered (DC; p = 0.002), average power (AP; p = 0.029) and average velocity (AV; p = 0.002). Increasing Trec in the morning to evening values or optimal values (38.5°C) did not increase RS performance to evening levels (p = 1.000). However, increasing Trec in the evening to “optimal” level through a passive warm-up significantly reduced DC (p = 0.008), AP (p < 0.0005) and AV (p = 0.007) to values found in the M condition (6.0–6.9%). Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research

    New Young Star Candidates in BRC 27 and BRC 34

    Get PDF
    We used archival Spitzer Space Telescope mid-infrared data to search for young stellar objects (YSOs) in the immediate vicinity of two bright-rimmed clouds, BRC 27 (part of CMa R1) and BRC 34 (part of the IC 1396 complex). These regions both appear to be actively forming young stars, perhaps triggered by the proximate OB stars. In BRC 27, we find clear infrared excesses around 22 of the 26 YSOs or YSO candidates identified in the literature, and identify 16 new YSO candidates that appear to have IR excesses. In BRC 34, the one literature-identified YSO has an IR excess, and we suggest 13 new YSO candidates in this region, including a new Class I object. Considering the entire ensemble, both BRCs are likely of comparable ages, within the uncertainties of small number statistics and without spectroscopy to confirm or refute the YSO candidates. Similarly, no clear conclusions can yet be drawn about any possible age gradients that may be present across the BRCs.Comment: 54 pages, 19 figures, accepted by A

    Football-induced fatigue in hypoxia impairs repeated sprint ability and perceptual-cognitive skills

    Get PDF
    The present study investigated the effects of football-induced fatigue during hypoxia on RS and perceptual-cognitive skills. Ten male semi-professional football players underwent four sessions; a control session (0-m) to quantify RS in a non-fatigued state; and three further sessions at hypoxia (0-m;1500-m;3000-m) examining RS and perceptual-cognitive skill responses for a given physical workload. Anticipation and decision-making accuracy were obtained at the 30-min mark of each half. The mean number of trials (%) in which the player made the correct response was used for analysis. HR, TC, RPE and % saturation of O2 were measured during the warm-up, football-induced fatigue and RS test. It was found that HR, RPE and % saturation of O2 were different between conditions (P<0.05; ES=0.44-6.13). Further, RS were affected by football-induced fatigue for DC (4.8%; P=0.019; ES=0.68) and AV (5.5%; P=0.006; ES=0.79). In hypoxia, it was observed that football-induced fatigue decreased by 6.5% in DC, 6.3% in AV and 3.1% in PV at 1500-m compared to 0-m (P<0.05). Further significant changes were found at 3000-m compared to 0-m decreasing 12.8% in DC, 12.8% in AV and 6.2% in PV (P<0.0005). More pronounced declines in perceptual-cognitive skills were found as altitude increased (5.0-12.5 %; P<0.05; ES=1.17-2.41) and between both halves (5.3-6.7 %; P<0.05). The data demonstrates that the RS test was highly sensitive to fatigue and hypoxia for a given physical load. Simulated matches in hypoxia revealed larger decreases, when compared to normoxia in RS and perceptual-cognitive skills, highlighting the need for optimal acclimatisation strategies, including physical and technical preparation, prior to playing a

    Daily variation in performance measures related to anaerobic power and capacity: A systematic review

    Get PDF
    Numerous functional measures related to anaerobic performance display daily variation. The diversity of tests and protocols used to assess anaerobic performance related to diurnal effects and the lack of a standardized approach have hindered agreement in the literature. Therefore, the aim of the present study was to investigate and systematically review the evidence relating to time-of day differences in anaerobic performance measures. The entire content of PubMed (MEDLINE), Scopus, SPORTDiscus® (via EBSCOhost) and Web of Science and multiple electronic libraries were searched. Only experimental research studies conducted in male adult participants aged ≥ 18yrs before May 2021 were included. Studies assessing tests related to anaerobic capacity or anaerobic power between a minimum of two time-points during the day (morning vs evening) were deemed eligible. The primary search revealed that a total of 55 out of 146 articles were considered eligible and subsequently included. Thirty-nine studies assessed anaerobic power and twenty-five anaerobic capacity using different modes of exercise and test protocols. Forty-eight studies found several of their performance variables to display time-of-day effects, with higher values in the evening than the morning, while seven studies did not find any time-of-day significance in any variables which were assessed. The magnitude of difference is dependent on the modality and the exercise protocol used. Performance measures for anaerobic power found jump tests displayed 2.7 to 12.3 % differences, force velocity tests ~8 % differences, sprint tests 2.7 to 11.3 % differences and 5-m multiple shuttle run tests 3.7 to 13.1 % differences in favour of the evening. Performance measures for anaerobic capacity found Wingate test to display 1.8 to 11.7 % differences and repeated sprint tests to display 3.4 to 10.2 % differences. The only test not to display time-of-day differences was the running based anaerobic sprint test (RAST). Time-of-day variations in anaerobic performance has previously been partially explained by higher core-body and/or muscle temperature and better muscle contractile properties in the afternoon, although recent findings suggest that differences in methodology, motivation/arousal, habitual training times and chronotypes could provide additional explanations. There is a clear demand for a rigorous, standardised approach to be adopted by future investigations which control factors that specifically relate to investigations of time-of-day

    Controlling rectal and muscle temperatures: Can we offset diurnal variation in repeated sprint performance?

    Get PDF
    The present study investigated whether increasing morning rectal temperatures (Trec) to resting.evening levels, or decreasing evening Trec or muscle (Tm) temperatures to morning values, would influence repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.8 ± 2.6 yr, peak oxygen uptake ( peak) 60.6 ± 4.6 mL kg min−1, stature 1.78 ± 0.07 m and body mass 76.0 ± 6.3 kg]. These included a control morning (M, 07:30 h) and evening (E, 17:30 h) session (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, on a motorised treadmill) until Trec reached evening levels; and two cool-down evening trials (in 16–17°C water) until Trec (EMrec) or Tm (EMmuscle) values reached morning temperatures, respectively. All sessions included a 3 × 3-s task-specific warm-up followed by 10 × 3-s RS with 30-s recoveries performed on a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up or cool-down period. Values for Trec and Tm were higher in the evening compared to morning values (0.45°C and 0.57°C, P < 0.05). RS performance was lower in the M for distance covered (DC), average power (AP) and average velocity (AV) (9–10%, P < 0.05). Pre-cooling Trec and Tm in the evening reduced RS performance to levels observed in the morning (P < 0.05). However, an active warm-up resulted in no changes in morning RS performance. Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research

    Lack of Support for the Association between GAD2 Polymorphisms and Severe Human Obesity

    Get PDF
    The demonstration of association between common genetic variants and chronic human diseases such as obesity could have profound implications for the prediction, prevention, and treatment of these conditions. Unequivocal proof of such an association, however, requires independent replication of initial positive findings. Recently, three (−243 A>G, +61450 C>A, and +83897 T>A) single nucleotide polymorphisms (SNPs) within glutamate decarboxylase 2 (GAD2) were found to be associated with class III obesity (body mass index > 40 kg/m(2)). The association was observed among 188 families (612 individuals) segregating the condition, and a case-control study of 575 cases and 646 lean controls. Functional data supporting a pathophysiological role for one of the SNPs (−243 A>G) were also presented. The gene GAD2 encodes the 65-kDa subunit of glutamic acid decarboxylase—GAD65. In the present study, we attempted to replicate this association in larger groups of individuals, and to extend the functional studies of the −243 A>G SNP. Among 2,359 individuals comprising 693 German nuclear families with severe, early-onset obesity, we found no evidence for a relationship between the three GAD2 SNPs and obesity, whether SNPs were studied individually or as haplotypes. In two independent case-control studies (a total of 680 class III obesity cases and 1,186 lean controls), there was no significant relationship between the −243 A>G SNP and obesity (OR = 0.99, 95% CI 0.83–1.18, p = 0.89) in the pooled sample. These negative findings were recapitulated in a meta-analysis, incorporating all published data for the association between the −243G allele and class III obesity, which yielded an OR of 1.11 (95% CI 0.90–1.36, p = 0.28) in a total sample of 1,252 class III obese cases and 1,800 lean controls. Moreover, analysis of common haplotypes encompassing the GAD2 locus revealed no association with severe obesity in families with the condition. We also obtained functional data for the −243 A>G SNP that does not support a pathophysiological role for this variant in obesity. Potential confounding variables in association studies involving common variants and complex diseases (low power to detect modest genetic effects, overinterpretation of marginal data, population stratification, and biological plausibility) are also discussed in the context of GAD2 and severe obesity

    Circadian variation in muscle force output in males using isokinetic, isometric dynamometry: can we observe this in multi-joint movements using the muscleLab force-velocity encoder and are they similar in peak and magnitude?

    Get PDF
    We have investigated the magnitude of circadian variation in Isokinetic and Isometric strength of the knee extensors and flexors, as well as back squat and bench press performance using the MuscleLab force velocity transducer. Ten resistance-trained males (mean±SD: age 21.5 ± 1.1 years; body mass 78.3 ± 5.2 kg; height 1.71 ± 0.07 m) underwent a) three to four familiarization sessions on each dynamometer and b) four sessions at different times of day (03:00, 09:00, 15:00 and 21:00 h). Each session was administered in a counterbalanced order and included a period when Perceived onset of mood states (POMS), then rectal and muscle temperature (Trec, Tm) was measured at rest, after which a 5-min standardized 150 W warm-up was performed on a cycle ergometer. Once completed, Isokinetic (60 and 240°·s−1 for extension and flexion) and Isometric dynamometry with peak torque (PT), time-to-peak-torque (tPT) and peak force (PF) and % activation was measured. Lastly, Trec and Tm were measured before the bench press (at 30, 50 and 70 kg) and back squat (at 40, 60 and 80 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV) and time-to-peak-velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Five-min recovery was allowed between each set with three repetitions being completed. General linear models with repeated measures and cosinor analysis were used to analyse the data. Values for Trec and Tm at rest were higher in the evening compared to morning values (Acrophase Φ: 16:35 and 17:03 h, Amplitude A: 0.30 and 0.23°C, Mesor M: 36.64 and 37.43°C, p < 0.05). Vigor, happy and fatigue mood states responses showed Φ 16:11 and 16:03 h and 02:05 h respectively. Circadian rhythms were apparent for all variables irrespective of equipment used where AF, PF and PT values peaked between 16:18 and 18:34 h; PV, tPV and tPT peaked between 05:54 and 08:03 h (p < 0.05). In summary, circadian rhythms in force output (force, torque, power, and velocity) were shown for isokinetic, isometric dynamometers and complex multi-joint movements (using a linear encoder); where tPV and tPT occur in the morning compared to the evening. Circadian rhythms in strength can be detected using a portable, low-cost instrument that shows similar cosinor characteristics as established dynamometers. Hence, muscle-strength can be measured in a manner that is more directly transferable to the world of athletic and sports performance
    corecore