608 research outputs found

    Transmission measurement at 10.6 microns of Te2As3Se5 rib-waveguides on As2S3 substrate

    Full text link
    The feasibility of chalcogenide rib waveguides working at lambda = 10.6 microns has been demonstrated. The waveguides comprised a several microns thick Te2As3Se5 film deposited by thermal evaporation on a polished As2S3 glass substrate and further etched by physical etching in Ar or CF4/O2 atmosphere. Output images at 10.6 microns and some propagation losses roughly estimated at 10dB/cm proved that the obtained structures behaved as channel waveguides with a good lateral confinement of the light. The work opens the doors to the realisation of components able to work in the mid and thermal infrared up to 20 microns and even more.Comment: The following article appeared in Vigreux-Bercovici et al., Appl. Phys. Lett. 90, 011110 (2007) and may be found at http://link.aip.org/link/?apl/90/01111

    Interactions with M cells and macrophages as key steps in the pathogenesis of enterohemorrhagic Escherichia coli infections

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) are food-borne pathogens that can cause serious infections ranging from diarrhea to hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Translocation of Shiga-toxins (Stx) from the gut lumen to underlying tissues is a decisive step in the development of the infection, but the mechanisms involved remain unclear. Many bacterial pathogens target the follicle-associated epithelium, which overlies Peyer's patches (PPs), cross the intestinal barrier through M cells and are captured by mucosal macrophages. Here, translocation across M cells, as well as survival and proliferation of EHEC strains within THP-1 macrophages were investigated using EHEC O157:H7 reference strains, isogenic mutants, and 15 EHEC strains isolated from HC/HUS patients. We showed for the first time that E. coli O157:H7 strains are able to interact in vivo with murine PPs, to translocate ex vivo through murine ileal mucosa with PPs and across an in vitro human M cell model. EHEC strains are also able to survive and to produce Stx in macrophages, which induce cell apoptosis and Stx release. In conclusion, our results suggest that the uptake of EHEC by M cells and underlying macrophages in the PP may be a critical step in Stx translocation and release in vivo. A new model for EHEC infection in humans is proposed that could help in a fuller understanding of EHEC-associated diseases

    A Multidomain Adhesion Protein Family Expressed in Plasmodium falciparum Is Essential for Transmission to the Mosquito

    Get PDF
    The recent sequencing of several apicomplexan genomes has provided the opportunity to characterize novel antigens essential for the parasite life cycle that might lead to the development of new diagnostic and therapeutic markers. Here we have screened the Plasmodium falciparum genome sequence for genes encoding extracellular multidomain putative adhesive proteins. Three of these identified genes, named PfCCp1, PfCCp2, and PfCCp3, have multiple adhesive modules including a common Limulus coagulation factor C domain also found in two additional Plasmodium genes. Orthologues were identified in the Cryptosporidium parvum genome sequence, indicating an evolutionary conserved function. Transcript and protein expression analysis shows sexual stage–specific expression of PfCCp1, PfCCp2, and PfCCp3, and cellular localization studies revealed plasma membrane–associated expression in mature gametocytes. During gametogenesis, PfCCps are released and localize surrounding complexes of newly emerged microgametes and macrogametes. PfCCp expression markedly decreased after formation of zygotes. To begin to address PfCCp function, the PfCCp2 and PfCCp3 gene loci were disrupted by homologous recombination, resulting in parasites capable of forming oocyst sporozoites but blocked in the salivary gland transition. Our results describe members of a conserved apicomplexan protein family expressed in sexual stage Plasmodium parasites that may represent candidates for subunits of a transmission-blocking vaccine

    Technology challenges for space interferometry: the option of mid-infrared integrated optics

    Full text link
    Nulling interferometry is a technique providing high angular resolution which is the core of the space missions Darwin and the Terrestrail Planet Finder. The first objective is to reach a deep degree of starlight cancelation in the range 6 -- 20 microns, in order to observe and to characterize the signal from an Earth-like planet. Among the numerous technological challenges involved in these missions, the question of the beam combination and wavefront filtering has an important place. A single-mode integrated optics (IO) beam combiner could support both the functions of filtering and the interferometric combination, simplifying the instrumental design. Such a perspective has been explored in this work within the project Integrated Optics for Darwin (IODA), which aims at developing a first IO combiner in the mid-infrared. The solutions reviewed here to manufacture the combiner are based on infrared dielectric materials on one side, and on metallic conductive waveguides on the other side. With this work, additional inputs are offered to pursue the investigation on mid-infrared photonics devices.Comment: Accepted in Adv. in Space Researc

    A symmoriiform chondrichthyan braincase and the origin of chimaeroid fishes

    Get PDF
    Chimaeroid fishes (Holocephali) are one of the four principal divisions of modern gnathostomes (jawed vertebrates). Despite only 47 described living species1, chimaeroids are the focus of resurgent interest as potential archives of genomic data2 and for the unique perspective they provide on chondrichthyan and gnathostome ancestral conditions. Chimaeroids are also noteworthy for their highly derived body plan1,3,4. However, like other living groups with distinctive anatomies5, fossils have been of limited use in unravelling their evolutionary origin, as the earliest recognized examples already exhibit many of the specializations present in modern forms6,7. Here we report the results of a computed tomography analysis of Dwykaselachus, an enigmatic chondrichthyan braincase from the ~280 million year old Karoo sediments of South Africa8. Externally, the braincase is that of a symmoriid shark9,10,11,12,13and is by far the most complete uncrushed example yet discovered. Internally, the morphology exhibits otherwise characteristically chimaeroid specializations, including the otic labyrinth arrangement and the brain space configuration relative to exceptionally large orbits. These results have important implications for our view of modern chondrichthyan origins, add robust structure to the phylogeny of early crown group gnathostomes, reveal preconditions that suggest an initial morpho-functional basis for the derived chimaeroid cranium, and shed new light on the chondrichthyan response to the extinction at the end of the Devonian period

    From local monitoring to a broad‐scale viability assessment: a case study for the Bonelli's Eagle in western Europe

    Get PDF
    Population viability analysis (PVA) has become a basic tool of current conservation practice. However, if not accounted for properly, the uncertainties inherent to PVA predictions can decrease the reliability of this type of analysis. In the present study, we performed a PVA of the whole western European population (France, Portugal, and Spain) of the endangered Bonelli's Eagle (Aquila fasciata), in which we thoroughly explored the consequences of uncertainty in population processes and parameters on PVA predictions. First, we estimated key vital rates (survival, fertility, recruitment, and dispersal rates) using monitoring, ringing, and bibliographic data from the period 1990-2009 from 12 populations found throughout the studied geographic range. Second, we evaluated the uncertainty about model structure (i.e., the assumed processes that govern individual fates and population dynamics) by comparing the observed growth rates of the studied populations with model predictions for the same period. Third, using the model structures suggested in the previous step, we assessed the viability of both the local populations and the overall population. Finally, we analyzed the effects of model and parameter uncertainty on PVA predictions. Our results strongly support the idea that all local populations in western Europe belong to a single, spatially structured population operating as a source-sink system, whereby the populations in the south of the Iberian Peninsula act as sources and, thanks to dispersal, sustain all other local populations, which would otherwise decline. Predictions regarding population dynamics varied considerably, and models assuming more constrained dispersal predicted more pessimistic population trends than models assuming greater dispersal. Model predictions accounting for parameter uncertainty revealed a marked increase in the risk of population declines over the next 50 years. Sensitivity analyses indicated that adult and pre‐adult survival are the chief vital rates regulating these populations, and thus, the conservation efforts aimed at improving these survival rates should be strengthened in order to guarantee the long‐term viability of the European populations of this endangered species. Overall, the study provides a framework for the implementation of multi‐site PVAs and highlights the importance of dispersal processes in shaping the population dynamics of long‐lived birds distributed across heterogeneous landscapes

    Incorporating ‘recruitment’ in matrix projection models : estimation, parameters, and the influence of model structure

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Ornithology 152, Suppl.2 (2012):585-595, doi:10.1007/s10336-010-0573-1.Advances in the estimation of population parameters using encounter data from marked individuals have made it possible to include estimates of the probability of recruitment in population projection models. However, the projected growth rate of the population, and the sensitivity of projected growth to changes in recruitment, can vary significantly depending upon both the structural form of the model and how recruitment is parameterized. We show that the common practices of (1) collapsing some age classes into a single, terminal ‘aggregated’ age-class, and (2) parameterizing recruitment using the proportion of recruited individuals (breeders) in a given age-class may confound analysis of age-based (Leslie) matrix projection models in some instances, relative to state-based projection models where recruited and pre-recruited individuals are treated as separate states. Failing to account for these differences can lead to misinterpretation of the relative role of recruitment in the dynamics of an age-structured population.We show that such problems can be avoided, either by structural changes to the terminal aggregated age-class in age-based models, or by using using a state-based model instead. Since all the metrics of general interest from a classical age-based matrix models are readily derived from a state-based model equivalent, this suggests there may be little reason to use the classical age-based approach in situations where recruitment is a parameter of interest

    West Nile Virus Surveillance, Guadeloupe, 2003–2004

    Get PDF
    We conducted extensive surveillance for West Nile virus infection in equines and chickens in Guadeloupe in 2003–2004. We showed a high seroprevalence in equines in 2003 related to biome, followed by a major decrease in virus circulation in 2004. No human or equine cases were reported during the study
    • 

    corecore