128 research outputs found

    Long-term changes in habitat and trophic level of Southern Ocean squid in relation to environmental conditions

    Get PDF
    Long-term studies of pelagic nekton in the Southern Ocean and their responses to ongoing environmental change are rare. Using stable isotope ratios measured in squid beaks recovered from diet samples of wandering albatrosses Diomedea exulans, we assessed decadal variation (from 1976 to 2016) in the habitat (δ13C) and trophic level (δ15N) of five important Southern Ocean squid species in relation to indices of environmental conditions—Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). Based on δ13C values, corrected for the Suess effect, habitat had changed over the last 50 years for Taonius sp. B (Voss), Gonatus antarcticus, Galiteuthis glacialis and Histioteuthis atlantica but not Moroteuthopsis longimana. By comparison, mean δ15N values were similar across decades for all five species, suggesting minimal changes in trophic levels. Both SAM and SOI have increased in strength and frequency over the study period but, of the five species, only in Taonius sp. B (Voss) did these indices correlate with, δ13C and δ15N values, indicating direct relationships between environmental conditions, habitat and trophic level. The five cephalopod species therefore changed their habitats with changing environmental conditions over the last 50 years but maintained similar trophic levels. Hence, cephalopods are likely to remain important prey for top predators in Southern Ocean food webs, despite ongoing climate change

    The rumen microbial metagenome associated with high methane production in cattle

    Get PDF
    Acknowledgements The Rowett Institute of Nutrition and Health and SRUC are funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The project was supported by Defra and the DA funded Agricultural Greenhouse Gas Inventory Research Platform, the Technology Strategy Board (Project No: TP 5903–40240) and the Biotechnology and Biological Sciences Research Council (BBSRC; BB/J004243/1, BB/J004235/1). Our thanks are due to the excellent support staff at the SRUC Beef and Sheep Research Centre, Edinburgh, and to Silvia Ramos Garcia for help in interrogating the data. MW and RR contributed equally to the paper and should be considered as joint last authors.Peer reviewedPublisher PD

    Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing.

    Get PDF
    Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD

    Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing

    Full text link

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis
    corecore