2,104 research outputs found
Social sciences research in neglected tropical diseases 3: Investment in social science research in neglected diseases of poverty: a case study of Bill and Melinda Gates Foundation
This article has been made available through the Brunel Open Access Publishing Fund.BACKGROUND: The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD) control has been acknowledged, there is limited data on the level of funding that supports NTD social science research.
METHOD: A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF) - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted.
RESULTS: Of 67 projects analysed, 26 projects (39%) were social science related while 41 projects (61%) were basic science or other translational research including drug development. A total of US 241 million) went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008.
CONCLUSION: The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research
Functional response of U.S. grasslands to the early 21st-century drought
Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change. We investigated the impact of the early 21st-century drought on aboveground net primary production (ANPP) of six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant deviations between observed and expected ANPP. In desert grasslands, drought-induced grass mortality led to shifts in the functional response to annual total precipitation (PT), and in some cases, new species assemblages occurred that included invasive species. In contrast, the ANPP in plains grasslands exhibited a strong linear function of the current-year PT and the previous-year ANPP, despite prolonged warm drought. We used these results to disentangle the impacts of interannual total precipitation, intra-annual precipitation patterns, and grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands to predicted climate change. This will allow managers to plan for predictable shifts in resources associated with climate change related to fire risk, loss of forage, and ecosystem services. © 2014 by the Ecological Society of America
Propagation of an Earth-directed coronal mass ejection in three dimensions
Solar coronal mass ejections (CMEs) are the most significant drivers of
adverse space weather at Earth, but the physics governing their propagation
through the heliosphere is not well understood. While stereoscopic imaging of
CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided
some insight into their three-dimensional (3D) propagation, the mechanisms
governing their evolution remain unclear due to difficulties in reconstructing
their true 3D structure. Here we use a new elliptical tie-pointing technique to
reconstruct a full CME front in 3D, enabling us to quantify its deflected
trajectory from high latitudes along the ecliptic, and measure its increasing
angular width and propagation from 2-46 solar radii (approximately 0.2 AU).
Beyond 7 solar radii, we show that its motion is determined by an aerodynamic
drag in the solar wind and, using our reconstruction as input for a 3D
magnetohydrodynamic simulation, we determine an accurate arrival time at the
Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie
The changing patterns of group politics in Britain
Two interpretations of ways in which group politics in Britain have presented challenges to democracy are reviewed: neo-corporatism or pluralistic stagnation and the rise of single issue interest groups. The disappearance of the first paradigm created a political space for the second to emerge. A three-phase model of group activity is developed: a phase centred around production interests, followed by the development of broadly based 'other regarding' groups, succeeded by fragmented, inner directed groups focusing on particular interests. Explanations of the decay of corporatism are reviewed. Single issue group activity has increased as party membership has declined and is facilitated by changes in traditional media and the development of the internet. Such groups can overload the policy-making process and frustrate depoliticisation. Debates about the constitution and governance have largely ignored these issues and there is need for a debate
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
Using co-authorship networks to map and analyse global Neglected Tropical Disease research with an affiliation to Germany
Neglected tropical disease research has changed considerably in recent decades, and the German government is committed to addressing its past neglect of NTD research. Our aim was to use an innovative social network analysis of bibliometric data to map neglected tropical disease research networks that are inside of and affiliated with Germany, thereby enabling data-driven health policy decision-making. We created and analysed co-author networks from publications in the SCOPUS database, with a focus on five diseases. We found that Germany's share of global publication output for NTDs is approximately half that of other medical research fields. Furthermore, we identified institutions with prominent NTD research within Germany and strong research collaborations between German institutions and partners abroad, mostly in other high-income countries. This allowed an assessment of strong collaborations for further development, e.g., for research capacity strengthening in low-income-countries, but also for identifying missed opportunities for collaboration within the network. Through co-authorship network analysis of individual researcher networks, we identified strong performers by using classic bibliometric parameters, and we identified academic talent by social network analysis parameters on an individual level
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process
for the ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian and New Zealand Intensive Care Society (ANZICS)BACKGROUND Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. METHODS Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. RESULTS The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag ₄₀ and 35% had autocorrelation through to lag ₄₀; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. CONCLUSIONS The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.John L Moran, Patricia J Solomo
- …
