988 research outputs found

    Characterization of the density and body size of a Gammarus pulex (Crustacea: Amphipoda) population in subsurface sediments reflects the sampling technique used

    Get PDF
    The hyporheic zone and its invertebrate fauna play vital roles in the functioning of lotic ecosystems. However, although sampling invertebrates from subsurface sediments is recognized as challenging, few studies have quantified the effectiveness of common sampling techniques. We conducted laboratory experiments to compare two common, semi-quantitative pump-sampling techniques – Bou-Rouch and vacuum-pump sampling. We determined the proportion of a Gammarus pulex (Crustacea: Amphipoda) population sampled by each method in five sediment treatments comprising coarse (16-32 mm), medium (8-16 mm), and fine (4-8 mm) gravel and combinations thereof. We compared the body size of individuals sampled and not sampled by each technique to the population mean. Density estimates obtained using both methods were low: 33 ± 5 and 5 ± 1% of the population present for Bou-Rouch and vacuum-pump samples, respectively. Density estimates were significantly higher for Bou-Rouch than for vacuum-pump samples in four sediment treatments, but were comparable in coarse gravel. The body size of organisms captured by the Bou-Rouch technique was comparable to the population mean, whereas those in vacuum-pump samples were smaller. With hyporheic invertebrates suggested as future biomonitors of ecosystem health, we recommend Bou-Rouch sampling as the more effective pump sampling method for community characterization

    Characterization of macroinvertebrate communities in the hyporheic zone of river ecosystems reflects the pump-sampling technique used

    Get PDF
    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: BouRouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive tax on lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection

    The Enhanced Liver Fibrosis test maintains its diagnostic and prognostic performance in alcohol-related liver disease: a cohort study

    Get PDF
    BACKGROUND: Alcohol is the main cause of chronic liver disease. The Enhanced Liver Fibrosis (ELF) test is a serological biomarker for fibrosis staging in chronic liver disease, however its utility in alcohol-related liver disease warrants further validation. We assessed the diagnostic and prognostic performance of ELF in alcohol-related liver disease. METHODS: Observational cohort study assessing paired ELF and histology from 786 tertiary care patients with chronic liver disease due to alcohol (n = 81) and non-alcohol aetiologies (n = 705). Prognostic data were available for 64 alcohol patients for a median of 6.4 years. Multiple ELF cut-offs were assessed to determine diagnostic utility in moderate fibrosis and cirrhosis. Survival data were assessed to determine the ability of ELF to predict liver related events and all-cause mortality. RESULTS: ELF identified cirrhosis and moderate fibrosis in alcohol-related liver disease independently of aminotransferase levels with areas under receiver operating characteristic curves of 0.895 (95% CI 0.823-0.968) and 0.923 (95% CI 0.866-0.981) respectively, which were non-inferior to non-alcohol aetiologies. The overall performance of ELF was assessed using the Obuchowski method: in alcohol = 0.934 (95% CI 0.908-0.960); non-alcohol = 0.907 (95% CI 0.895-0.919). Using ELF < 9.8 to exclude and ≧ 10.5 to diagnose cirrhosis, 87.7% of alcohol cases could have avoided biopsy, with sensitivity of 91% and specificity of 85%. A one-unit increase in ELF was associated with a 2.6 (95% CI 1.55-4.31, p < 0.001) fold greater odds of cirrhosis at baseline and 2.0-fold greater risk of a liver related event within 6 years (95% CI 1.39-2.99, p < 0.001). CONCLUSIONS: ELF accurately stages liver fibrosis independently of transaminase elevations as a marker of inflammation and has superior prognostic performance to biopsy in alcohol-related liver disease

    Investment coordination in network industries: the case of electricity grid and electricity generation

    Full text link
    Liberalization of network industries frequently separates the network from the other parts of the industry. This is important in particular for the electricity industry where private firms invest into generation facilities, while network investments usually are controlled by regulators. We discuss two regulatory regimes. First, the regulator can only decide on the network extension. Second, she can additionally use a capacity market with payments contingent on private generation investment. For the first case, we find that even absent asymmetric information, a lack of regulatory commitment can cause inefficiently high or inefficiently low investments. For the second case, we develop a standard handicap auction which implements the first best under asymmetric information if there are no shadow costs of public funds. With shadow costs, no simple mechanism can implement the second best outcome

    Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Get PDF
    BACKGROUND: Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. METHODS: We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. RESULTS: Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1) probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. CONCLUSIONS: Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss

    Modelling informative time points: an evolutionary process approach

    Get PDF
    Real time series sometimes exhibit various types of "irregularities": missing observations, observations collected not regularly over time for practical reasons, observation times driven by the series itself, or outlying observations. However, the vast majority of methods of time series analysis are designed for regular time series only. A particular case of irregularly spaced time series is that in which the sampling procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modelled and the times of the observations. In this work, we propose a model in which the sampling design depends on all past history of the observed processes. Taking into account the natural temporal order underlying available data represented by a time series, then a modelling approach based on evolutionary processes seems a natural choice. We consider maximum likelihood estimation of the model parameters. Numerical studies with simulated and real data sets are performed to illustrate the benefits of this model-based approach.- The authors acknowledge Foundation FCT (FundacAo para a Ciencia e Tecnologia) as members of the research project PTDC/MAT-STA/28243/2017 and Center for Research & Development in Mathematics and Applications of Aveiro University within project UID/MAT/04106/2019

    Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms

    Full text link
    About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.Comment: 3 figures, 1 tabl

    Identification of Mechanosensitive Genes during Embryonic Bone Formation

    Get PDF
    Although it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by “mechanosensitive” genes, but it is a challenge to demonstrate that the genetic regulation of the biological system is dependant on particular mechanical forces in vivo. We propose a new means of selecting candidate mechanosensitive genes by comparing in vivo gene expression patterns with patterns of biophysical stimuli, computed using finite element analysis. In this study, finite element analyses of the avian embryonic limb were performed using anatomically realistic rudiment and muscle morphologies, and patterns of biophysical stimuli were compared with the expression patterns of four candidate mechanosensitive genes integral to bone development. The expression patterns of two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise with biophysical stimuli induced by embryonic muscle contractions, identifying them as potentially being involved in the mechanoregulation of bone formation. An altered mechanical environment was induced in the embryonic chick, where a neuromuscular blocking agent was administered in ovo to modify skeletal muscle contractions. Finite element analyses predicted dramatic changes in levels and patterns of biophysical stimuli, and a number of immobilised specimens exhibited differences in ColX and Ihh expression. The results obtained indicate that computationally derived patterns of biophysical stimuli can be used to inform a directed search for genes that may play a mechanoregulatory role in particular in vivo events or processes. Furthermore, the experimental data demonstrate that ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators in translating information from the mechanical environment to the molecular regulation of bone formation in the embryo

    Peripheral neural cell sensitivity to mTHPC-mediated photodynamic therapy in a 3D in vitro model

    Get PDF
    Background: The effect of photodynamic therapy (PDT) on neural cells is important when tumours are within or adjacent to the nervous system. The purpose of this study was to investigate PDT using the photosensitiser, meta tetrahydroxyphenyl chlorin (mTHPC), on rat neurons and satellite glia, compared with human adenocarcinoma cell (MCF-7).Methods: Fluorescence microscopy confirmed that mTHPC was incorporated into all three cell types. Sensitivity of cells exposed to mTHPC-PDT (0–10 µg ml–1) was determined in a novel 3-dimensional collagen gel culture system. Cell death was quantified using propidium iodide and cell types were distinguished using immunocytochemistry. In some cases, neuron survival was confirmed by measuring subsequent neurite growth in monolayer culture.Results: MCF-7s and satellite glia were significantly more sensitive to PDT than neurons. Importantly, 4 µg ml–1 mTHPC PDT caused no significant neuron death compared with untreated controls but was sufficient to elicit substantial cell death in the other cell types. Initially, treatment reduced neurite length; neurons then extended neurites equivalent to those of untreated controls. The protocol was validated using hypericin (0–3 µg ml–1), which caused neuron death equivalent to other cell types.Conclusion: Neurons in culture can survive mTHPC-PDT under conditions sufficient to kill tumour cells and other nervous system cells
    corecore