21 research outputs found

    Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans

    Get PDF
    Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region

    Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds

    Get PDF
    The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae) of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m) and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40–60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor) that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap

    Gene diversity in grevillea populations introduced in Brazil and its implication on management of genetic resources.

    Get PDF
    A variabilidade isoenzimática para seis populações de Grevillea robusta, oriundas de um teste de procedências/progenies, implantado no delineamento em blocos casualizados com 5 plantas por parcela, no Sul do Brasil, é descrita. A estrutura genética da população foi analisada utilizando-se marcadores bioquímicos, aos 5 anos de idade, especificamente para os locos MDH-3, PGM-2, DIA-2, PO-1, PO-2, SOD-1, e SKDH-1. As procedências do norte de ocorrência natural (Rathdowney e Woodenbong) apresentaram divergência genética superior, em relação à média das progênies, considerando o número de alelos por locus, (Ap), a riqueza alélica (Rs), a diversidade genética de Nei (H), e o coeficiente de endogamia (f). A endogamia foi detectada em diversos graus. A testemunha comercial apresentou o maior coeficiente de endogamia, (f = 0,4448), comparativamente à média das procedências (f = 0,2306), possivelmente devido à insuficiente amostragem populacional na região de origem (Austrália). Apesar de sua ocorrência natural restrita, observou-se correlação positiva entre divergência genética e distância geográfica entre as populações originais. A distância genética e análise de cluster, baseada no modelo bayesiano, mostrou três grupos de procedências distintos: 1) Rathdowney- QLD e Woodenbong-QLD; 2) Paddy?s Flat-NSW; e 3) Mann River-NSW, Boyd River-NSW e a testemunha comercial (material utilizado no Brasil). O agrupamento da testemunha com as procedências Mann River-NSW e Boyd River-NSW sugere um maior potencial das procedências do norte para o melhoramento genético visando à produção de madeira no Brasil, devido a sua elevada diversidade genética e baixo coeficiente de endogamia

    Universal Plant DNA Barcode Loci May Not Work in Complex Groups: A Case Study with Indian Berberis Species

    Get PDF
    BACKGROUND: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated the species discriminatory power of four reportedly most promising plant DNA barcoding loci (one from nuclear genome--ITS, and three from plastid genome--trnH-psbA, rbcL and matK) in species of Indian Berberis L. (Berberidaceae) and two other genera, Ficus L. (Moraceae) and Gossypium L. (Malvaceae). Berberis species were delineated using morphological characters. These characters resulted in a well resolved species tree. Applying both nucleotide distance and nucleotide character-based approaches, we found that none of the loci, either singly or in combinations, could discriminate the species of Berberis. ITS resolved all the tested species of Ficus and Gossypium and trnH-psbA resolved 82% of the tested species in Ficus. The highly regarded matK and rbcL could not resolve all the species. Finally, we employed amplified fragment length polymorphism test in species of Berberis to determine their relationships. Using ten primer pair combinations in AFLP, the data demonstrated incomplete species resolution. Further, AFLP analysis showed that there was a tendency of the Berberis accessions to cluster according to their geographic origin rather than species affiliation. CONCLUSIONS/SIGNIFICANCE: We reconfirm the earlier reports that the concept of universal barcode in plants may not work in a number of genera. Our results also suggest that the matK and rbcL, recommended as universal barcode loci for plants, may not work in all the genera of land plants. Morphological, geographical and molecular data analyses of Indian species of Berberis suggest probable reticulate evolution and thus barcode markers may not work in this case

    Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    Get PDF
    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes

    Structure of a toothed cetacean community around a tropical island (Mayotte, Mozambique Channel)

    No full text
    We describe the structure of a toothed cetacean community around the island of Mayotte (South-West Indian Ocean, 45°10′ E, 12°50′ S), using data collected from small boat-based surveys conducted between July 2004 and June 2006. In all, 16 odontocete species were recorded. Diversity (Shannon-Weaver index) was particularly high along the outer slope of the barrier reef. Patterns of spatial distribution underscore the existence of three main cetacean habitat types: the inner lagoon (Indo-Pacific bottlenosed dolphin Tursiops aduncus and humpback dolphin Sousa chinensis), the outer-reef slope (spinner dolphin Stenella longirostris, pantropical spotted dolphin S. attenuate and melon-headed whale Peponocephala electra) and oceanic waters deeper than 500 m (e.g. Blainville’s beaked whale Mesoplodon densirostris). Group characteristics were highly variable among species, with oceanic small delphinids characterised by larger group sizes than strictly coastal and non-delphinid oceanic species. The outer slope of the barrier reef appears to be of primary importance in terms of density and diversity of odontocetes around Mayotte. Results support the hypothesis that a number of cetacean species, particularly several delphinid species, are dependent on coral reef complexes.Keywords: barrier reef slope, cetaceans, community composition, distribution, encounter rates, Indian Ocean, Mayotte, odontocetesAfrican Journal of Marine Science 2010, 32(3): 543–55

    Short CommunicationObservations of individual humpback whales utilising multiple migratory destinations in the south-western Indian Ocean

    No full text
    Movements of humpback whales Megaptera novaeangliae&nbsp; among breeding regions within the southwestern Indian Ocean are poorly understood. Understanding the relationships among breeding regions is critical for effective &nbsp;conservation and management strategies. Through systematic comparisons of molecular genotypes and both systematic and non-systematic comparisons of individual identification photographs collected between 1996 and 2006, we have &nbsp;thus far identified nine whales (six males and three females) utilising two breeding areas within this region: the northern Mozambique Channel and eastern Madagascar. Four of the nine whales were recaptured using only photographic data, two whales were independently recaptured using both photographic and genetic data, and three whales were recaptured exclusively using molecular methods. The discovery of these nine individuals provides much-needed data to guide the formulation and future revision of stock boundaries. Keywords: conservation, genetics, Indian Ocean sanctuary, mark-recapture, Megaptera novaeangliae, microsatellite, migration, photo-identificationAfrican Journal of Marine Science 2011, 33(2): 333&ndash;33

    Data from: The origin and genetic differentiation of the socially parasitic aphid Tamalia inquilinus

    No full text
    Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum-likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host-associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall-forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host-plant-associated differentiation were greater in the non-gall-inducing parasites than in their gall-inducing hosts. RNA-seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host-plant relationships. Our results suggest a mode of speciation in which host plants drive within-guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids
    corecore