529 research outputs found

    Unusual thermoelectric behavior of packed crystalline granular metals

    Full text link
    Loosely packed granular materials are intensively studied nowadays. Electrical and thermal transport properties should reflect the granular structure as well as intrinsic properties. We have compacted crystalline CaAlCaAl based metallic grains and studied the electrical resistivity and the thermoelectric power as a function of temperature (TT) from 15 to 300K. Both properties show three regimes as a function of temperature. It should be pointed out : (i) The electrical resistivity continuously decreases between 15 and 235 K (ii) with various dependences, e.g. ≃\simeq T−3/4T^{-3/4} at low TT, while (iii) the thermoelectric power (TEP) is positive, (iv) shows a bump near 60K, and (v) presents a rather unusual square root of temperature dependence at low temperature. It is argued that these three regimes indicate a competition between geometric and thermal processes, - for which a theory seems to be missing in the case of TEP. The microchemical analysis results are also reported indicating a complex microstructure inherent to the phase diagram peritectic intricacies of this binary alloy.Comment: to be published in J. Appl. Phys.22 pages, 8 figure

    Reentrant Phenomenon in Quantum Phase Diagram of Optical Boson Lattice

    Full text link
    We calculate the location of the quantum phase transitions of a bose gas trapped in an optical lattice as a function of effective scattering length a_{\eff} and temperature TT. Knowledge of recent high-loop results on the shift of the critical temperature at weak couplings is used to locate a {\em nose} in the phase diagram above the free Bose-Einstein critical temperature Tc(0)T_c^{(0)}, thus predicting the existence of a reentrant transition {\em above} Tc(0)T_c^{(0)}, where a condensate should form when {\em increasing} a_{\eff}. At zero temperature, the transition to the normal phase produces the experimentally observed Mott insulator.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.htm

    Suppression of Mott–Hubbard states and metal–insulator transitions in the two-band Hubbard model

    Get PDF
    I investigate band and Mott insulating states in a two-band Hubbard model, with the aim of understanding the differences between the idealized one-orbital model and the more realistic multi-band case. Using a projection ansatz I show that additional orbitals suppress the metal–insulator transition, leading to a critical coupling of approximately eight times the bare bandwidth. I also demonstrate the effects of orbital ordering, which hinder Mott–Hubbard states and open a bandgap. Since multi-band correlations are common in real materials, this work suggests that very strongly correlated band insulators may be more common than Mott–Hubbard insulators

    Pairwise statistical significance of local sequence alignment using multiple parameter sets and empirical justification of parameter set change penalty

    Get PDF
    Background: Accurate estimation of statistical significance of a pairwise alignment is an important problem in sequence comparison. Recently, a comparative study of pairwise statistical significance with database statistical significance was conducted. In this paper, we extend the earlier work on pairwise statistical significance by incorporating with it the use of multiple parameter sets. Results: Results for a knowledge discovery application of homology detection reveal that using multiple parameter sets for pairwise statistical significance estimates gives better coverage than using a single parameter set, at least at some error levels. Further, the results of pairwise statistical significance using multiple parameter sets are shown to be significantly better than database statistical significance estimates reported by BLAST and PSI-BLAST, and comparable and at times significantly better than SSEARCH. Using non-zero parameter set change penalty values give better performance than zero penalty. Conclusion: The fact that the homology detection performance does not degrade when using multiple parameter sets is a strong evidence for the validity of the assumption that the alignment score distribution follows an extreme value distribution even when using multiple parameter sets. Parameter set change penalty is a useful parameter for alignment using multiple parameter sets. Pairwise statistical significance using multiple parameter sets can be effectively used to determine the relatedness of a (or a few) pair(s) of sequences without performing a time-consuming database search

    Spin injection and spin accumulation in all-metal mesoscopic spin valves

    Get PDF
    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin injectors and detectors. For the nonmagnetic metal both aluminium (Al) and copper (Cu) are used. Our multi-terminal geometry allows us to experimentally separate the spin valve effect from other magneto resistance signals such as the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR contribution of the ferromagnetic contacts can dominate the amplitude of the spin valve effect, making it impossible to observe the spin valve effect in a 'conventional' measurement geometry. In a 'non local' spin valve measurement we are able to completely isolate the spin valve signal and observe clear spin accumulation signals at T=4.2 K as well as at room temperature (RT). For aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350 nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory and results obtained from giant magneto resistance (GMR), conduction electron spin resonance (CESR), anti-weak localization and superconducting tunneling experiments. The spin valve signals generated by the Py electrodes (alpha_F lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes (alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR

    Trajectories for the Wave Function of the Universe from a Simple Detector Model

    Get PDF
    Inspired by Mott's (1929) analysis of particle tracks in a cloud chamber, we consider a simple model for quantum cosmology which includes, in the total Hamiltonian, model detectors registering whether or not the system, at any stage in its entire history, passes through a series of regions in configuration space. We thus derive a variety of well-defined formulas for the probabilities for trajectories associated with the solutions to the Wheeler-DeWitt equation. The probability distribution is peaked about classical trajectories in configuration space. The ``measured'' wave functions still satisfy the Wheeler-DeWitt equation, except for small corrections due to the disturbance of the measuring device. With modified boundary conditions, the measurement amplitudes essentially agree with an earlier result of Hartle derived on rather different grounds. In the special case where the system is a collection of harmonic oscillators, the interpretation of the results is aided by the introduction of ``timeless'' coherent states -- eigenstates of the Hamiltonian which are concentrated about entire classical trajectories.Comment: 37 pages, plain Tex. Second draft. Substantial revision

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    Differential branching fraction and angular analysis of Λb0→ΛΌ+Ό−\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- decays

    Get PDF
    The differential branching fraction of the rare decay Λb0→ΛΌ+Ό−\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- is measured as a function of q2q^{2}, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 \mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is observed in the q2q^2 region below the square of the J/ψJ/\psi mass. Integrating over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+ 0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1}, where the uncertainties are statistical, systematic and due to the normalisation mode, Λb0→J/ψΛ\Lambda^{0}_{b} \rightarrow J/\psi \Lambda, respectively. In the q2q^2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon (AFBlA^{l}_{\rm FB}) and hadron (AFBhA^{h}_{\rm FB}) systems are measured for the first time. In the range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} = -0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} = -0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    • 

    corecore