70 research outputs found

    Osmo-air drying of aloe vera gel cubes

    Get PDF
    Aloe vera (Aloe barbadensis Miller) cubes of 12.5 × 12.5 × 12.5 mm thick were osmosed for 4 h in sugar syrup of 30, 40 and 50°Brix concentration and temperatures of 30 and 50°C at constant syrup to fruit ratio of 5:1. Osmosed and unosmosed aloe vera samples were hot air dried at 50, 60, 70 and 80°C with constant air velocity of 1.5 m/s. The water loss, solid gain and convective drying behaviour were recorded during experiments. It was observed that water loss and solid gain ranged from 39.2 to 71.3 and 2.7 to 6.3%, respectively during osmo-drying. The moisture diffusivity varied from 2.9 to 8.0 × 10−9 m²/s and 2.7 to 4.6 × 10−9 m²/s during air drying of osmosed and unosmosed aloe vera samples, respectively. Drying air temperature and osmosis as pre-treatment affected the water loss, solid gain, diffusivity at −p ≤ 0.0

    Silica burial enhanced by iron limitation in oceanic upwelling margins

    Get PDF
    In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake

    Automatic ROI Selection in Structural Brain MRI Using SOM 3D Projection

    Get PDF
    This paper presents a method for selecting Regions of Interest (ROI) in brain Magnetic Resonance Imaging (MRI) for diagnostic purposes, using statistical learning and vector quantization techniques. The proposed method models the distribution of GM and WM tissues grouping the voxels belonging to each tissue in ROIs associated to a specific neurological disorder. Tissue distribution of normal and abnormal images is modelled by a Self-Organizing map (SOM), generating a set of representative prototypes, and the receptive field (RF) of each SOM prototype defines a ROI. Moreover, the proposed method computes the relative importance of each ROI by means of its discriminative power. The devised method has been assessed using 818 images from the Alzheimer's disease Neuroimaging Initiative (ADNI) which were previously segmented through Statistical Parametric Mapping (SPM). The proposed algorithm was used over these images to parcel ROIs associated to the Alzheimer's Disease (AD). Additionally, this method can be used to extract a reduced set of discriminative features for classification, since it compresses discriminative information contained in the brain. Voxels marked by ROIs which were computed using the proposed method, yield classification results up to 90% of accuracy for controls (CN) and Alzheimer's disease (AD) patients, and 84% of accuracy for Mild Cognitive Impairment (MCI) and AD patients.This work was partly supported by the MICINN under the TEC2012-34306 project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRxResearch; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    Towards an optimal sampling strategy for assessing genetic variation within and among white clover (Trifolium repens L.) cultivars using AFLP

    Get PDF
    Cost reduction in plant breeding and conservation programs depends largely on correctly defining the minimal sample size required for the trustworthy assessment of intra- and inter-cultivar genetic variation. White clover, an important pasture legume, was chosen for studying this aspect. In clonal plants, such as the aforementioned, an appropriate sampling scheme eliminates the redundant analysis of identical genotypes. The aim was to define an optimal sampling strategy, i.e., the minimum sample size and appropriate sampling scheme for white clover cultivars, by using AFLP data (283 loci) from three popular types. A grid-based sampling scheme, with an interplant distance of at least 40 cm, was sufficient to avoid any excess in replicates. Simulations revealed that the number of samples substantially influenced genetic diversity parameters. When using less than 15 per cultivar, the expected heterozygosity (He) and Shannon diversity index (I) were greatly underestimated, whereas with 20, more than 95% of total intra-cultivar genetic variation was covered. Based on AMOVA, a 20-cultivar sample was apparently sufficient to accurately quantify individual genetic structuring. The recommended sampling strategy facilitates the efficient characterization of diversity in white clover, for both conservation and exploitation

    Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    Get PDF
    Chagas disease is one of the most important neglected diseases in Latin America. Although insecticides have been successfully sprayed to control domiciliated vector populations, this strategy has proven to be ineffective in areas where non-domiciliated vectors immigrating from peridomestic or sylvatic ecotopes can (re-)infest houses. The development of strategies for the control of non-domiciliated vectors has thus been identified by the World Health Organization as a major challenge. Such development primarily requires a description of the spatio-temporal dynamics of infestation by these vectors, and a good understanding of their dispersal. We combined for the first time extensive spatio-temporal data sets describing house infestation dynamics by Triatoma dimidiata inside one village, and spatially explicit population dynamics models. The models fitted and predicted remarkably the observed infestation dynamics. They thus provided both key insights into the dispersal of T. dimidiata in this area, and a suitable mathematical background to evaluate the efficacy of various control strategies. Interestingly, the observed and modelled patterns of infestation suggest that interventions could focus on the periphery of the village, where there is the highest risk of transmission. Such spatial optimization may allow for reducing the cost of control, compensating for repeated interventions necessary for non-domiciliated vectors

    Interactive Effect of UVR and Phosphorus on the Coastal Phytoplankton Community of the Western Mediterranean Sea: Unravelling Eco- Physiological Mechanisms

    Get PDF
    Versión del editor4,411

    The equilibria that allow bacterial persistence in human hosts

    Full text link
    We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62883/1/nature06198.pd

    Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus.

    Get PDF
    Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE

    TLR2/MyD88/NF-κB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection

    Get PDF
    Human respiratory syncytial virus (RSV) constitute highly pathogenic virus that cause severe respiratory diseases in newborn, children, elderly and immuno-compromised individuals. Airway inflammation is a critical regulator of disease outcome in RSV infected hosts. Although “controlled” inflammation is required for virus clearance, aberrant and exaggerated inflammation during RSV infection results in development of inflammatory diseases like pneumonia and bronchiolitis. Interleukin-1β (IL-1β) plays an important role in inflammation by orchestrating the pro-inflammatory response. IL-1β is synthesized as an immature pro-IL-1β form. It is cleaved by activated caspase-1 to yield mature IL-1β that is secreted extracellularly. Activation of caspase-1 is mediated by a multi-protein complex known as the inflammasome. Although RSV infection results in IL-1β release, the mechanism is unknown. Here in, we have characterized the mechanism of IL-1β secretion following RSV infection. Our study revealed that NLRP3/ASC inflammasome activation is crucial for IL-1β production during RSV infection. Further studies illustrated that prior to inflammasome formation; the “first signal” constitutes activation of toll-like receptor-2 (TLR2)/MyD88/NF-κB pathway. TLR2/MyD88/NF-κB signaling is required for pro-IL-1β and NLRP3 gene expression during RSV infection. Following expression of these genes, two “second signals” are essential for triggering inflammasome activation. Intracellular reactive oxygen species (ROS) and potassium (K+) efflux due to stimulation of ATP-sensitive ion channel promote inflammasome activation following RSV infection. Thus, our studies have underscored the requirement of TLR2/MyD88/NF-κB pathway (first signal) and ROS/potassium efflux (second signal) for NLRP3/ASC inflammasome formation, leading to caspase-1 activation and subsequent IL-1β release during RSV infection

    ECLAPTE: Effective Closure of LAParoTomy in Emergency-2023 World Society of Emergency Surgery guidelines for the closure of laparotomy in emergency settings

    Get PDF
    Laparotomy incisions provide easy and rapid access to the peritoneal cavity in case of emergency surgery. Incisional hernia (IH) is a late manifestation of the failure of abdominal wall closure and represents frequent complication of any abdominal incision: IHs can cause pain and discomfort to the patients but also clinical serious sequelae like bowel obstruction, incarceration, strangulation, and necessity of reoperation. Previous guidelines and indications in the literature consider elective settings and evidence about laparotomy closure in emergency settings is lacking. This paper aims to present the World Society of Emergency Surgery (WSES) project called ECLAPTE (Effective Closure of LAParoTomy in Emergency): the final manuscript includes guidelines on the closure of emergency laparotomy
    corecore