1,493 research outputs found

    Reconciling a significant hierarchical assembly of massive early-type galaxies at z<~1 with mass downsizing

    Get PDF
    Hierarchical models predict that massive early-type galaxies (mETGs) are the latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting with the observational phenomenon of galaxy mass downsizing, which poses that the most massive galaxies have been in place earlier that their lower-mass counterparts (since z~0.7). We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The most striking model prediction is that very few present-day mETGs have been really in place since z~1, because ~90% of the mETGs existing at z~1 are going to be involved in a major merger between z~1 and the present. Accounting for this, the model derives an assembly redshift for mETGs in good agreement with hierarchical expectations, reproducing observational mass downsizing trends at the same time.Comment: 2 pages, 1 figure, Proceedings of Symposium 2 of JENAM 2010, "Environment and the Formation of Galaxies: 30 years later", ed. I. Ferreras and A. Pasquali, Astrophysics & Space Science Proceedings, Springe

    Reconstructing North Atlantic marine climate variability using an absolutely-dated sclerochronological network

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Reconstructing regional to hemispheric-scale climate variability requires the application of spatially representative and climatically sensitive proxy archives. Large spatial networks of dendrochronologies have facilitated the reconstruction of atmospheric variability and inferred variability in the Atlantic Ocean system. However, the marine environment has hitherto lacked the direct application of the spatial network approach because of the small number of individual absolutely-dated marine archives. In this study we present the first analyses of a network of absolutely-dated annually-resolved growth increment width chronologies from the marine bivalves Glycymeris glycymeris and Arctica islandica. The network contains eight chronologies spanning > 500 km along the western British continental shelf from the southern Irish Sea to North West Scotland. Correlation analysis of the individual chronologies and a suite of climate indices, including the Atlantic Multidecadal Oscillation (AMO), Central England surface air temperature (CET), northeast Atlantic sea surface temperatures (SST's) and the winter North Atlantic Oscillation (wNAO), demonstrates that, despite the large geographical distances been sites and the heterogeneous nature of the marine environment, the increment width variability in these series contains an element of coherence likely driven by a common response to changing environmental forcing. A nested Principal component analysis (PCA) was used to construct five composite series which explain between 31% and 74% of the variance across the individual chronologies. Linear regression analyses indicate that the composite series explain up to 41% of the variance in Northeast Atlantic SSTs over the calibration period (1975–2000). Calibration verification (reduction of error [RE] and coefficient of efficiency [CE]) statistics indicate that the composite series contains significant skill at reconstructing multi-decadal northeast Atlantic SST variability over the past two centuries (1805–2010). These data suggest that composite series derived from sclerochronology networks can facilitate the robust reconstruction of marine climate over past centuries to millennia providing invaluable baseline records of natural oceanographic variability.This work was supported financially by the NERC funded project Climate of the Last Millennium Project (CLAM; project No. NE/N001176/1) and the Marie Curie Frame work Partnership Annually Resolved Archives of Marine Climate Change (ARAMACC; Project No. FP7 604802). The authors would like to thank the three anonymous reviewer‘s for their constructive comments during the peer review process

    The relationship between galaxy and dark matter halo size from z ∼ 3 to the present

    Get PDF
    We explore empirical constraints on the statistical relationship between the radial size of galaxies and the radius of their host dark matter haloes from z similar to 0.1-3 using the Galaxy And Mass Assembly (GAMA) and Cosmic Assembly Near Infrared Deep Extragalactic Legacy Survey (CANDELS) surveys. We map dark matter halo mass to galaxy stellar mass using relationships from abundance matching, applied to the Bolshoi-Planck dissipationless N-body simulation. We define SRHR equivalent to r(e)/R-h as the ratio of galaxy radius to halo virial radius, and SRHR lambda equivalent to r(e)/(lambda R-h) as the ratio of galaxy radius to halo spin parameter times halo radius. At z similar to 0.1, we find an average value of SRHR similar or equal to 0.018 and SRHR. similar or equal to 0.5 with very little dependence on stellar mass. Stellar radius-halo radius (SRHR) and SRHR lambda have a weak dependence on cosmic time since z similar to 3. SRHR shows a mild decrease over cosmic time for low-mass galaxies, but increases slightly or does not evolve formoremassive galaxies. We find hints that at high redshift (z similar to 2-3), SRHR. is lower for more massive galaxies, while it shows no significant dependence on stellar mass at z less than or similar to 0.5. We find that for both the GAMA and CANDELS samples, at all redshifts from z similar to 0.1-3, the observed conditional size distribution in stellar mass bins is remarkably similar to the conditional distribution of lambda R-h. We discuss the physical interpretation and implications of these results

    A universal model for mobility and migration patterns

    Get PDF
    Introduced in its contemporary form by George Kingsley Zipf in 1946, but with roots that go back to the work of Gaspard Monge in the 18th century, the gravity law is the prevailing framework to predict population movement, cargo shipping volume, inter-city phone calls, as well as bilateral trade flows between nations. Despite its widespread use, it relies on adjustable parameters that vary from region to region and suffers from known analytic inconsistencies. Here we introduce a stochastic process capturing local mobility decisions that helps us analytically derive commuting and mobility fluxes that require as input only information on the population distribution. The resulting radiation model predicts mobility patterns in good agreement with mobility and transport patterns observed in a wide range of phenomena, from long-term migration patterns to communication volume between different regions. Given its parameter-free nature, the model can be applied in areas where we lack previous mobility measurements, significantly improving the predictive accuracy of most of phenomena affected by mobility and transport processes.Comment: Main text and supplementary informatio

    Non-Abelian discrete gauge symmetries in 4d string models

    Full text link
    We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour symmetries constraining the quark and lepton mass matrices, as we show in specific examples.Comment: 58 pages; minor typos corrected and references adde

    Identification of candidate pelagic marine protected areas through a seabird seasonal-, multispecific- and extinction risk-based approach

    Get PDF
    With increasing pressure on the oceans from environmental change, there has been a global call for improved protection of marine ecosystems through the implementation of marine protected areas (MPAs). Here, we used species distribution modelling (SDM) of tracking data from 14 seabird species to identify key marine areas in the southwest Atlantic Ocean, valuing areas based on seabird species occurrence, seasonality and extinction risk. We also compared overlaps between the outputs generated by the SDM and layers representing important human threats (fishing intensity, ship density, plastic and oil pollution, ocean acidification), and calculated loss in conservation value using fishing and ship density as cost layers. The key marine areas were located on the southern Patagonian Shelf, overlapping extensively with areas of high fishing activity, and did not change seasonally, while seasonal areas were located off south and southeast Brazil and overlapped with areas of high plastic pollution and ocean acidification. Non-seasonal key areas were located off northeast Brazil on an area of high biodiversity, and with relatively low human impacts. We found support for the use of seasonal areas depending on the seabird assemblage used, because there was a loss in conservation value for the seasonal compared to the non-seasonal approach when using ‘cost’ layers. Our approach, accounting for seasonal changes in seabird assemblages and their risk of extinction, identified additional candidate areas for incorporation in the network of pelagic MPAs

    Bituminous mixtures with low percentage of natural aggregates and rubber modified bitumen with wax

    Get PDF
    The three mixtures included in the Spanish specifications (asphalt concrete, porous asphalt and very thin asphalt concrete) were designed replacing more than 80% of the natural aggregates by black slag of electric arc furnace and recycled asphalt pavement. Besides, a rubber modified bitumen was used as binder, analyzing the performance of a fatty acid amide wax as additive to decrease its viscosity at mixing temperature, and avoid the higher manufacturing temperature of this type of bitumen. Three stages were carried out to design the mixtures: first, the viscosity analysis of the rubber modified bitumen when the wax is added. Second, the experimental design of the mixtures with the alternative aggregates at conventional temperature, using the rubber modified bitumen without wax. Finally, the study of the behaviour of the three mixes with the same dosage of the previous phase, but manufactured at reduced temperature, that is including the fatty acid amide wax to the binder. The tests of the Spanish specifications have been performed to design the mixtures and compare their performance in both conditions (with and without wax): void characteristics, water sensitivity test, wheel tracking test, and Cantabro loss particle test in dry and wet conditions. The results have shown that it is feasible to design mixtures in which practically the whole mineral skeleton comes from black slag and recycled asphalt, manufacturing them with a rubber modified bitumen but at the same range of temperatures than conventional 50/70 penetration grade binder, and fulfilling the standards for any climatic zone and heavy traffic level

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    The Effect of Financial Incentives on Patient Decisions to Undergo Low‐value Head Computed Tomography Scans

    Full text link
    BackgroundExcessive diagnostic testing and defensive medicine contribute to billions of dollars in avoidable costs in the United States annually. Our objective was to determine the influence of financial incentives, accompanied with information regarding test risk and benefit, on patient preference for diagnostic testing.MethodsWe conducted a cross‐sectional survey of patients at the University of Michigan emergency department (ED). Each participant was presented with a hypothetical scenario involving an ED visit following minor traumatic brain injury. Participants were given information regarding potential benefit (detecting brain hemorrhage) and risk (developing cancer) of head computed tomography scan, as well as an incentive of 0or0 or 100 to forego testing. We used 0.1 and 1% for test benefit and risk, and values for risk, benefit, and financial incentive varied across participants. Our primary outcome was patient preference to undergo testing. We also collected demographic and numeracy information. We then used logistic regression to estimate odds ratios (ORs), which were adjusted for multiple potential confounders. Our sample size was designed to find at least 300 events (preference for testing) to allow for inclusion of up to 30 covariates in fully adjusted models. We had 85% to 90% power to detect a 10% absolute difference in testing rate across groups, assuming a 95% significance level.ResultsWe surveyed 913 patients. Increasing test benefit from 0.1% to 1% significantly increased test acceptance (adjusted OR [AOR] = 1.6, 95% confidence interval [CI] = 1.2 to 2.1) and increasing test risk from 0.1% to 1% significantly decreased test acceptance (AOR = 0.70, 95% CI = 0.52 to 0.93). Finally, a $100 incentive to forego low‐value testing significantly reduced test acceptance (AOR = 0.6; 95% CI = 0.4 to 0.8).ConclusionsProviding financial incentives to forego testing significantly decreased patient preference for testing, even when accounting for test benefit and risk. This work is preliminary and hypothetical and requires confirmation in larger patient cohorts facing these actual decisions.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151851/1/acem13823_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151851/2/acem13823-sup-0001-DataSupplementS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151851/3/acem13823.pd

    A new method to quantify and compare the multiple components of fitness-A study case with kelp niche partition by divergent microstage adaptations to Temperature

    Get PDF
    Point 1 Management of crops, commercialized or protected species, plagues or life-cycle evolution are subjects requiring comparisons among different demographic strategies. The simpler methods fail in relating changes in vital rates with changes in population viability whereas more complex methods lack accuracy by neglecting interactions among vital rates. Point 2 The difference between the fitness (evaluated by the population growth rate.) of two alternative demographies is decomposed into the contributions of the differences between the pair-wised vital rates and their interactions. This is achieved through a full Taylor expansion (i.e. remainder = 0) of the demographic model. The significance of each term is determined by permutation tests under the null hypothesis that all demographies come from the same pool. Point 3 An example is given with periodic demographic matrices of the microscopic haploid phase of two kelp cryptic species observed to partition their niche occupation along the Chilean coast. The method provided clear and synthetic results showing conditional differentiation of reproduction is an important driver for their differences in fitness along the latitudinal temperature gradient. But it also demonstrated that interactions among vital rates cannot be neglected as they compose a significant part of the differences between demographies. Point 4 This method allows researchers to access the effects of multiple effective changes in a life-cycle from only two experiments. Evolutionists can determine with confidence the effective causes for changes in fitness whereas population managers can determine best strategies from simpler experimental designs.CONICYT-FRENCH EMBASSADY Ph.D. gran
    corecore