1,231 research outputs found

    Can government-allocated land contribute to food security? Intrahousehold analysis of West Bengal’s Microplot allocation program

    Get PDF
    Secure land rights are a critical, but often overlooked, factor in achieving household food security and improved nutritional status in rural areas of developing countries. This study evaluates the impact of India’s land-allocation and registration program in West Bengal, a program that targets poor populations and promotes the inclusion of women’s names on land titles. We use mixed methods data collected between 2010 and 2012 to examine the program’s selection of beneficiaries and a set of outcomes that are expected to lay the foundation for future food security, as well as short-term food security indicators. Our results indicate that the program’s implementation at the block level allowed for considerable variation in the processes used to select beneficiaries, to demarcate plots, to distribute titles and to provide infrastructure support. Although we were unable to detect statistically significant program effects on current house hold food security, we find that the land-allocation and registration program has had an impact on a range of outcomes that are expected to lead to future food security: beneficiary households report stronger security, and they are more likely to take loans for agricultural purposes, to invest in agricultural improvements, and to involve women when making decisions related to food and agriculture. These effects vary with plot size—larger plots lead to larger benefits —and depend on whose names are included on the land documents; the effects are larger if women’s names are recorded on the land titles

    Quantum Electrodynamics of the Helium Atom

    Full text link
    Using singlet S states of the helium atom as an example, I describe precise calculation of energy levels in few-electron atoms. In particular, a complete set of effective operators is derived which generates O(m*alpha^6) relativistic and radiative corrections to the Schr"odinger energy. Average values of these operators can be calculated using a variational Schr"odinger wave function.Comment: 23 pages, revte

    Extending the bandwidth of optical-tweezers interferometry

    Get PDF
    The extension of the bandwidth of optical-tweezers interferometry was discussed. It was found that the detection bandwidth was extended to at least 100 KHz, either by using wavelengths below 850 nm or by using different detectors at longer wavelengths. The power spectral density of the Brownian motion of micron-sized beads in optical tweezers was also measured

    Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI)

    Get PDF
    Individual micron-sized solid particles from a Salamols pharmaceutical inhaler are stably captured in air using an optical trap for the first time. Raman spectroscopy of the levitated particles allows online interrogation of composition and deliquescent phase change within a high humidity environment that mimics the particle’s travel from inhaler to lun

    Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth

    Get PDF
    In a typical optical tweezers detection system, the position of a trapped object is determined from laser light impinging on a quadrant photodiode. When the laser is infrared and the photodiode is of silicon, they can act together as an unintended low-pass filter. This parasicit effect is due to the high transparency of silicon to near-infrared light. A simple model that accounts for this phenomenon is here solved for frequencies up to 100 kHz and for laser wavelengths between 750 and 1064 nm. The solution is applied to experimental data in the same range, and is demonstrated to give this detection system of optical tweezers a bandwidth, accuracy, and precision that are limited only by the data acquisition board's bandwidth and bandpass ripples, here 96.7 kHz and 0.005 dB, respectively. ©2006 American Institute of Physic

    Cyclic Performance of Steel Sheet Connections for CFS framed Steel Sheet Sheathed Shear Walls

    Get PDF
    The main objective of this research is to study fastener-level force-deformation response appropriate for standard cold-formed steel (CFS) framed steel sheet sheathed shear walls under cyclic loads. Recently completed CFS-framed shear wall tests employing thin steel sheets screw-fastened to thicker CFS-framing have recorded higher capacity and ductility for the CFS-framed steel sheet sheathed shear walls. For the seismic performance of these shear walls, the cyclic nonlinear response of the fastener connection is especially important and should incorporate the impact of shear buckling of the steel sheet on the strength and ductility of the connection. Minimal cyclic fastener-level shear test data exists, especially for combinations of screw fastened thin steel sheet and thick framing steel. To address this, a unique lap shear test following AISI S905 was designed to elucidate and characterize the cyclic fastener behavior. The specimens were loaded with an asymmetric cyclic loading protocol which intentionally buckles the sheet in the compression direction, and progressively increases in the tension direction. A total of 93 tests demonstrating a wide range of framing thickness, sheet thickness, fastener size, and loading types were conducted. Key experimental statistics, including the characterization with a multi-linear backbone curve, are provided. Fastener connection strength is sensitive to whether the thin steel sheet ply is buckling away from or towards the fastener head in some test series. AISI S100-16 screw shear strength provisions performance is evaluated. The work is aimed at providing critical missing information for CFS-framed steel sheet sheathed shear walls for use in both simulation and design.This work is part of the research project Seismic Resiliency of Repetitively Framed Mid-Rise Cold-Formed Steel Building (CFS-NHERI) which is supported by the National Science Foundation under Grant No.1663348 and No. 1663569. Test materials were provided by ClarkDietrich and are gratefully acknowledged. The tests conducted herein were assisted by Gbenga Olaolorun and Joel John, the authors would like to express gratitude to their great help. Moreover, the testing would not have been possible without the support from lab staff Nick Logvinovsky, we greatly appreciate his assistance. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the sponsors and employers

    Biological measurement beyond the quantum limit

    Full text link
    Quantum noise places a fundamental limit on the per photon sensitivity attainable in optical measurements. This limit is of particular importance in biological measurements, where the optical power must be constrained to avoid damage to the specimen. By using non-classically correlated light, we demonstrated that the quantum limit can be surpassed in biological measurements. Quantum enhanced microrheology was performed within yeast cells by tracking naturally occurring lipid granules with sensitivity 2.4 dB beyond the quantum noise limit. The viscoelastic properties of the cytoplasm could thereby be determined with a 64% improved measurement rate. This demonstration paves the way to apply quantum resources broadly in a biological context

    Intraspecfic variation in cold-temperature metabolic phenotypes of Arabidopsis lyrata ssp petraea

    Get PDF
    Atmospheric temperature is a key factor in determining the distribution of a plant species. Alongside this, plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. We investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes associated with exposure to cold temperatures. Seeds of A. petraea were obtained from populations along a latitudinal gradient, namely Wales, Sweden and Iceland and grown in a controlled cabinet environment. Mannose, glucose, fructose, sucrose and raffinose concentrations were different between cold treatments and populations, especially in the Welsh population, but polyhydric alcohol concentrations were not. The free amino acid compositions were population specific, with fold differences in most amino acids, especially in the Icelandic populations, with gross changes in amino acids, particularly those associated with glutamine metabolism. Metabolic fingerprints and profiles were obtained. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic characteristic phenotypes for each population and temperature. It is suggested that amino acids and carbohydrates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations at different atmospheric temperatures. These findings show that there is significant natural variation in cold metabolism among populations of A. l. petraea which may signify plant adaptation to local climates

    Theory for Metal Hydrides with Switchable Optical Properties

    Full text link
    Recently it has been discovered that lanthanum, yttrium, and other metal hydride films show dramatic changes in the optical properties at the metal-insulator transition. Such changes on a high energy scale suggest the electronic structure is best described by a local model based on negatively charged hydrogen (H^-) ions. We develop a many-body theory for the strong correlation in a H^- ion lattice. The metal hydride is described by a large UU-limit of an Anderson lattice model. We use lanthanum hydride as a prototype of these compounds, and find LaH3_3 is an insulator with a substantial gap consistent with experiments. It may be viewed either as a Kondo insulator or a band insulator due to strong electron correlation. A H vacancy state in LaH3_3 is found to be highly localized due to the strong bonding between the electron orbitals of hydrogen and metal atoms. Unlike the impurity states in the usual semiconductors, there is only weak internal optical transitions within the vacancy. The metal-insulator transition takes place in a band of these vacancy states.Comment: 18 pages, 16 figures and 6 tables. Submitted to PR

    Lateral Response of Cold-Formed Steel Framed Steel Sheathed In-line Wall Systems Detailed for Mid-Rise Build

    Get PDF
    Buildings constructed with cold formed steel (CFS) framing have shown great potential as a modern efficient building system. However, full understanding of their lateral structural behavior, particularly the contribution from non-designated systems, under seismic events is limited. The current North American Standards provide information that can be used to design CFS framed steel sheet shear walls which meet the seismic demands for low- to mid-rise (3-6 story) buildings. However, there is a paucity in experimental data to support design guidelines for taller mid-rise (>6 stories) and high-rise buildings (>10 stories), where large lateral load resistance is required. Moreover, existing code guidelines are based primarily on experiments involving shear walls subject to quasi-static monotonic and reversed cyclic loading protocols. In the current research project, shear walls placed in-line with gravity walls were tested at full-scale first under a sequence of increasing amplitude (in-plane) earthquake motions, and subsequently (for select specimens) under slow monotonic pull conditions to failure. Experiments were performed at the NHERI Large High-Performance Outdoor Shake Table at the University of California, San Diego. The selection of wall details was motivated by a CFS archetype building designed at 4 and 10 stories, as well as available experimental data. This paper documents the experimental response and physical damage observations of four wall specimen pairs in the test program. These particular specimens adopt compression chord stud packs with a steel tension tie-rods assembly, are either unfinished or finished on their exterior face, and laid out in a symmetric or asymmetric fashion. In addition, both Type I and “Type II” shear wall detailing are investigated.The research presented is funded through the National Science Foundation (NSF) grants CMMI 1663569 and CMMI 1663348, project entitled: Collaborative Research: Seismic Resiliency of Repetitively Framed Mid-Rise Cold-Formed Steel Buildings. Ongoing research is a result of collaboration between three academic institutions: University of California, San Diego, Johns Hopkins University and University of Massachusetts Amherst, two institutional granting agencies: American Iron and Steel Institute and Steel Framing Industry Association and ten industry partners. Industry sponsors include ClarkDietrich Building Systems, California Expanded Metal Products Co. (CEMCO), SWS Panel and several others who each provided financial, construction, and materials support. Regarding support for the test program, the efforts of NHERI@UCSD staff, namely, Robert Beckley, Darren McKay, Jeremy Fitcher, and Alex Sherman, and graduate student Filippo Sirotti are greatly appreciated. Findings, opinions, and conclusions are those of the authors and do not necessarily reflect those of the sponsoring organizations
    corecore