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In a typical optical tweezers detection system, the position of a trapped object is determined from
laser light impinging on a quadrant photodiode. When the laser is infrared and the photodiode is of
silicon, they can act together as an unintended low-pass filter. This parasitic effect is due to the high
transparency of silicon to near-infrared light. A simple model that accounts for this phenomenon
[Berg-Sorensen et al., J. Appl. Phys. 93, 3167 (2003)] is here solved for frequencies up to 100 kHz
and for laser wavelengths between 750 and 1064 nm. The solution is applied to experimental data
in the same range, and is demonstrated to give this detection system of optical tweezers a
bandwidth, accuracy, and precision that are limited only by the data acquisition board’s bandwidth
and bandpass ripples, here 96.7 kHz and 0.005 dB, respectively. © 2006 American Institute of

Physics. [DOL: 10.1063/1.2204589]

I. INTRODUCTION

Photodiode-based detection systems are used in a num-
ber of modern techniques ranging from the detection of the
cantilever deflection in atomic force microscopes,l’2 over de-
tection schemes coupled to optical tweezers (Refs. 3-5, and
references therein), to equipment used in high-energy phys-
ics particle detectors.”” When common Si-PIN diodes are
used to detect 1064 nm laser light, over 50% loss of signal is
seen for frequencies above approximately 10 kHz,* " and
the loss is detectable from approximately 1 kHz."

This loss in signal power has a characteristic function
similar to that of a low-pass filter, and is caused by light
absorption in the n layer of the diode. Its physics was ex-
plained and modeled mathematically in Refs. 10 and 11. The
model was demonstrated to account fully for the phenom-
enon up to the 25 kHz Nyquist frequency used, and the re-
sulting theory for the power spectrum agrees with the experi-
mental spectrum to within the 1% stochastic error on the
latter. The various degrees of loss in signal power was dem-
onstrated in Ref. 12 for photodetectors made from different
materials, including a specialized Si diode, and for a range of
laser wavelengths.

In the present article, the model proposed in Ref. 10 is
used to account for this parasitic filtering for power spectral
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frequencies up to 90 kHz, for various laser wavelengths. The
position detection system consists of a tunable laser used in
conjunction with a Si-PIN diode and A—3 data acquisition
electronics with a sampling frequency of 195 kHz. The sig-
nal analyzed is the position of a microsphere doing Brownian
motion in a liquid while being held in an optical trap. We
thus extend the useful power-spectral frequency range in op-
tical tweezers experiments to the maximum set by our data
acquisition electronics. This enlarged bandwidth is of rel-
evance to experiments in, e.g., single molecule biophysics13
and rnicrorheology,&l“*16 as was recently demonstrated in
Ref. 15 for a smaller frequency range. In the larger frequency
range recorded here, parasitic filtering is stronger, so its mod-
elling is more demanding, but not complicated, as we show.
Thus the calibration procedure demonstrated here makes op-
tical tweezers a tool of accuracy and precision with signifi-
cantly higher bandwidth than before.

The article is organized as follows: Sec. II briefly de-
scribes the experimental procedure. Section III gives the nec-
essary formulas from physics and power spectrum analysis.
Section IV analyzes the physics of the detection system. Sec-
tion V explains how the model parameters of the photodiode
detection system are determined experimentally. Sections VI
and VII describe our data analysis and experimental results,
respectively. Section VIII contains our conclusions.

Il. EXPERIMENTS

We measured the Brownian motion of optically trapped
microscopic beads in water by back-focal-plane inter-
ferometry.4 We repeated these measurements at a number of

© 2006 American Institute of Physics
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trapping laser wavelengths. We used silica beads with a di-
ameter of 900 nm (Bangs Laboratories, Fishers, IN) dis-
persed in water. Beads were diluted typically to a concentra-
tion of 107 w/v and introduced into a sample chamber
made of a cover slip and a microscope slide glued together
with double-stick tape. Beads were trapped ~10 um above
the cover slip/water interface to minimize their hydrody-
namic interaction with the interface.

The custom-built instrument used for the experiments is
based on a continuous-wave Ti:sapphire laser (Mira 900F
with a triple-plate birefringent filter, pumped by a Verdi V10
frequency-doubled Nd:YVO, laser, Coherent Inc., Santa
Clara, CA), tunable from 730 to 1000 nm. The collimated
beam from this laser is expanded nine times and focused to a
diffraction limited spot in the sample with a high-numerical-
aperture microscope objective (S Fluor, 100X, NA 1.3, Ni-
kon Corp., Kanagawa, Japan). The detection optics of the
setup consist of a high-numerical-aperture condenser
(Achromat/Aplanat, NA 1.4, Nikon) to collect the trapping
laser light, with the back-focal plane of the condenser im-
aged onto a silicon quadrant photodiode (SPOT 9-DMI,
UDT, Hawthorne, CA) operated at 15 V reversed bias. We
also repeated these measurements with a largely identical
setup, but with a different laser, a 1064 nm laser (Nd: YVO,,
Compass 1064—-4000 M, Coherent Inc.).17

The signals from the four quadrants of the diode were
amplified by low-noise, high-bandwidth preamplifiers
(custom-built) and the distribution of light on the diode was
calculated by an analog normalizing differential amplifier
(custom-built)."” The signals were then digitized with an A/D
board sampling at 195 kHz per channel (AD16 board on a
ChicoPlus PC-card, Innovative Integration, Simi Valley,
CA). This board is based on A—2, conversion technology.18
This implies oversampling of the signal and no external an-
tialiasing filters are needed. The specified 3 dB frequency of
the board is 0.496f;mple, in our case 96.7 kHz.

Time series of approximately 8 X 10° points were re-
corded using custom-written LABVIEW software (National In-
struments, Austin, TX).

lll. TRAPPED BEAD’S BROWNIAN MOTION IN LIQUID

To make the present article self-contained with respect to
key formulas, we give those here in the notation used in Ref.
11 where more details are given.

A. The Einstein-Ornstein-Uhlenbeck theory of
Brownian motion

The Einstein-Ornstein-Uhlenbeck theory describes the
Brownian motion of a spherical bead trapped in a harmonic
potential with three identical, uncoupled Langevin equations,

one for each of the bead’s Cartesian coordinates
[x(1),y(2),z()]." For the x-coordinate, this equation reads
mi(t) + yoi(1) + kx(1) = (2kpTyp) > 9(1). (1)

Here, m is the mass of the bead, 7, is its friction coefficient,
—kx(7) is the harmonic force from the trap, and the random
thermal forces from the surrounding liquid are modeled with
the term (2kzTy,)"? (1), a white-noise random process with
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explicitly written amplitude (2kzT7,)"?. The stochastic pro-
cess 7(f) has a vanishing mean and a delta-function as auto-
correlation function. Stokes law for a spherical particle gives

Yo=6mprR, ()

where pv is the liquid’s shear viscosity, p is the liquid’s
density, v is its kinematic viscosity, and R is the radius of the
spherical particle.

As a model for Brownian motion in a liquid, the
Einstein-Ornstein-Uhlenbeck theory is only valid as a low-
frequency approximation. It ignores the fact that the friction
coefficient is frequency dependent, when the hydrodynamics
of the surrounding liquid is taken into account. At frequen-
cies low enough to make the Einstein-Ornstein-Uhlenbeck
theory an acceptable approximation, its inertial term, mx, can
be left out to an even better approximation, which leaves us
with the original Einstein theory from 1905. Thus, the only
use we have for the Einstein-Ornstein-Uhlenbeck theory here
is to establish the connection between Newton’s second law,
Eq. (1), and Einstein’s approximate theory for Brownian mo-
tion.

B. Power spectrum of Einstein’s theory of Brownian
motion

Einstein’s theory results in a Lorentzian power
20,21 .
spectrum for the motion,
/(27
Pe=(P)=—5— . (3)
f c + f k

Here ( ) denotes an expectation value, P¥ denotes experi-
mental power spectral values, the corner frequency
f.=kl/(277y,) has been introduced, and Einstein’s relation
D=kgT/ vy, between diffusion constant, Boltzmann energy,
and friction coefficient, has been used. The discrete fre-
quency fi=k/t,, with k as an integer and 7, as the dura-
tion of the time interval on which x(¢) is Fourier transformed.
Here we have used the same normalization of the power
spectrum as in Ref. 11 [Egs. (7) and (8)]. There, it was also
shown that P,(fx) is exponentially distributed, with the expec-
tation value given in Eq. (3) and, as is always the case for
exponential distributions, with root-mean-square deviation
equal to its mean,

(P =((PEY = PYD) 2= Py (4)

C. Hydrodynamically correct power spectrum of
Brownian motion in liquid

The power spectrum of a classical Brownian motion in a
liquid is known beyond the approximate Einstein-Ornstein-
Uhlenbeck theory. It is known exactly in the limit of a van-
ishing Reynolds number, which limit is an extremely good
approximation for classical Brownian motion."" We use this
result to analyze the experimental power spectrum in its en-
tire frequency range. By doing so we account for the fre-
quency dependence of viscous friction, for the frequency de-
pendence of the inertial mass of entrained liquid, for the
bead’s inertial mass, and for the finite distance € between the
center of the bead and the surface of the experimental cham-
ber. The frequency-dependent extra friction experienced by
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the bead as a result of its hydrodynamical interaction with
this surface is known only approximately, but to a very good
approximation. This is all done by replacing the power spec-
trum in Eq. (3) with the expression'"?,

Phydro(fk;R/€)
DI(27)(Re v/y,)

= , 5
o+ fiim w0 —ff P + iRe )P )
where to first order in R/ ¢,
)/Ock,R/f) = ')/0|:1 + (1 - l) \/%— l%%:|
X(Hi’jx {1_5\/@@3
16 ¢ 3 fv 91,
_ %(1 _ e—(l—i)(2€—R)/5):| ) . (6)

In these expressions, two new characteristic frequencies have
been introduced: f, is the frequency at which the penetration
depth in the liquid of the bead’s linear harmonic motion
equals the radius of the bead, f,=v/(mR*)=1.6 MHz. The
penetration depth &(f)=(v/ f)"?> characterizes the exponen-
tial decrease of the fluid’s velocity field as a function of the
distance from a bead that is forced to do linear harmonic
motion with frequency f. The other characteristic frequency
is f,=7v/(Q2mm)=1.6 MHz, where m is the mass of the
bead. The numerical values given here for these frequencies
are for silica beads of R=450 nm in water, and the two nu-
merical values are equal because f,/f,=9p/(4ppeaq) and
P/ Ppeaa=4/9 in the present case of a silica bead in water.

This theory of trapped Brownian motion does not de-
pend on the wavelength \ of the trapping laser. Nevertheless,
the recorded power spectra depend on A, as illustrated in Fig.
1.

Equation (5) describes the physical power spectrum. A
fit of Eq. (5) to data obtained with A=900 nm is plotted in
Fig. 2. As demonstrated in Fig. 2(b), the physical power
spectrum differs from the recorded power spectrum. This
discrepancy is caused by the position detection system,
which low-pass filters the position signal, as described be-
low.

IV. THE Si-PIN DIODE

Light detection with a photodiode can be modeled as
follows:' A typical construction of a Si-PIN photodiode is
illustrated in Fig. 3. The p and n layers are essentially field-
free, while there is an electrical field across the depletion
zone. The nanosecond response time of the photodiode given
by its manufacturer is reached when all photons are absorbed
in the depletion zone, a few tens of microns into the material.
This is the case for visible light. Light with longer wave-
lengths, however, has photon energies near or below the
band gap in silicon, hence a much lower absorption coeffi-
cient. It penetrates into the substrate of the diode (commonly
a n layer), creates charge carriers also there, and these reach
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FIG. 1. Three experimental power spectra, taken with roughly equal trap
strengths, using three different laser wavelengths (800, 900, and 1000 nm).
(a) Power spectrum P(f) vs frequency f. The solid line corresponds to
P(f) = f-2, the behavior of a Lorentzian at large frequencies, and serves to
guide the eye. Above approximately 5 kHz, the power spectrum taken with
the 1000 nm laser drops off faster than the other two spectra, though it
describes the same physical phenomenon. This faster drop-off is similar to
the effect of a low-order low-pass filter. (b) Same data plotted as f2P(f) vs
frequency f to better display the filter effect. The laser wavelength depen-
dence of the filter effect shows that it cannot be explained by the physics of
the Brownian motion. The physics of the position detection system is re-
sponsible.

the depletion layer by diffusion only, thereby causing a de-
layed signal. (Only holes are taken into account to model the
delayed signal, as argued in Ref. 10.)

The diode is very flat, its xy dimensions being much
larger than its z dimension. We need only consider diffusive
motion and only in the z direction: Significant concentration
gradients of holes, hence significant transport of these by
diffusion, are found only in the z direction, because holes are
removed only in the depletion zone. Recombination of holes
with conduction electrons can be ignored to a very good
approximation on the time scales and with the level of pre-
cision considered here.

A. Diffusion equation

The time evolution of the density p(z,f) of holes as a
function of depth z within the substrate is governed by the
diffusion equation

o =D§—Z2, (7)

where D is the thermal diffusion coefficient of holes. In pure
silicon, P=12.9 cm?/s at room temperature (Ref. 23, Fig.
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FIG. 2. Experimental power spectrum obtained with a laser wavelength of
900 nm and fitted with theoretical power spectrum Pyq,, given in Eq. (5) in
the frequency interval [110 Hz,80 kHz]. (a) Blocked data points with the
fitted Pyyaro shown as a solid line, and a fitted Lorentzian shown as a dashed
line. (b) Residual plot, i.e., a plot of experimental values divided by fitted
theoretical values, PE¥(f)/ Phyarolf), Vs frequency f. This plot reveals a sig-
nificant difference between the experimental spectrum and the theory fitted
to it, a difference that is not visible in i (a). The two horizontal dashed lines
indicate a =1 standard deviation according to the theory for how the data,
shown as dots, should scatter about their expectation value of 1.

4.11 and Ref. 6, Example 5.1). In the weakly doped n layer
that makes up the substrate, D’s value in pure silicon is a
good approximation, and this value will be used in the fol-
lowing.

As shown in Fig. 3, we choose the z axis so that the n
layer’s boundaries are located at z=0 and z=L. They are
modeled as absorbing at z=0 and reflecting at z=L, i.e.,

Anode
] e
K& p—layer J /
=0 + Depletion zone
n-layer
z=L +
Yz C +

Cathode

FIG. 3. Typical cross section of a photodiode operated with a reverse bias.
Reproduced from Ref. 27. Not to scale. While the sensitive area measures
cm?, L is typically some hundred micrometers, and the p layer and the
depletion zone are typically a few to tens of micrometers thick.

Rev. Sci. Instrum. 77, 063106 (2006)

p(z=0,1)=0, @(z=L,t)=0. (8)
dz

Holes are detected within nanoseconds once they have
reached the depletion zone. The delayed part of the diode’s
output signal is therefore well approximated by the diffusive
current of holes out of the n layer and into the depletion
layer. This current, I(z), is given by Fick’s law,

1(7) :—D@(Fo,t). 9)
Jz

The solution to the diffusion equation, Eq. (7), in any
compact volume can be written as a discrete sum of eigen-
modes of exponential relaxation, each with its own relax-
ation time. With the boundary conditions of Eq. (8), Eq. (7)
gives

p(z.1)=py 2 b, eXP(- i)m[@ﬂ, (10)
n=0 7,

n

where the characteristic relaxation time 7, of the nth spatial
mode is

o 2L 2
7,=D [—(2n+l)ﬂ'] . (11)

The relaxation times decrease rapidly with n, the longest
being

417
W= (12)

with the higher spatial modes having shorter relaxation times
by factors 9, 25, 49, 81,....

This large separation between the slowest relaxation
mode and the faster ones gives rise to another significant
simplification. In the case considered in Ref. 10, the maxi-
mum frequency considered was as low as 14 kHz. There all
relaxation modes except the slowest one were too fast to be
resolved in time and instead contributed to the part of the
output signal that appeared instantaneous. Also, silicon is so
transparent to the 1064 nm laser light used that the initial
distribution of charge carriers created by a flash of light was
considered constant in the z direction. Specifically, the in-
verse absorption coefficient of the 1064 nm light in Si is of
order 1 mm, whereas the dimension of a typical diode in the
z direction is of the order of a few hundred microns. These
simplifying circumstances made it possible to use a simple
solution of the model.

B. Solution of the diffusion equation for a large range
of wavelengths

Here, we discuss a range of wavelengths of incident la-
ser light and aim to model the experimental power spectrum
up to 100 kHz. The density of holes created by a flash of
light then takes the form p(z,t=0)=p, exp(—az), where a is
the absorption coefficient of silicon at the particular wave-
length of light. With Egs. (7)—(12) we thus find
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- )" Y(aL)exp(-aL) + [(2n + 1)7]/2
L ) A A YRS | R
(aL)*+[(2n+ 1)7/2]
which reduces to the result of Ref. 10 when a vanishes. The
diffusive current of holes I(z) out of the n layer is

1= 2205 (04 1y, exp(— i). (14)
2L n=0 Tn
For a sufficiently small absorption coefficient, and with a
Nyquist frequency fnyq=97.5 kHz as here, several relaxation
modes may be discerned in the data. Therefore, we model the
response function g(z) of the photodiode with a yet undeter-
mined number of terms,

N
g(1) = 2N §(1) + [1 - oM Cy > (2n + 1)b,
n=0
t
Xexp(— —), (15)
Tn

where ¢ is the duration of time from the moment a pulse of
light hits the diode untill an output current is detected. The
fraction of response that effectively is instantaneous when N
relaxation modes are included in the sum is denoted
a9iodeN) The factor Cy is a normalization factor making the
time integral of the second term in g(r) equal to
1—'%odeN) i e | the fraction of the response that is not ef-
fectively instantaneous. Thus

N -1 N -1
Cy=| 2 @n+Db,r, | =(2 2] - (16)
n=0 n=0

We see that a pulse of light will, in principle, cause an output
at all later times due to the exponentials in Eq. (15), but we
also see that these currents die out exponentially fast, with
characteristic relaxation times given in Eq. (11).

A light signal S(¢) detected by the photodiode thus pro-
duces an output

S(del)(t) — f g(t _ l‘,)S(l")dl‘, , (17)

part of which is delayed. In Fourier space, by virtue of the
convolution theorem, this relationship reads

O GEGRGR (18)
where ~ denotes Fourier transformation. Thus, the recorded
experimental power spectrum P(f) = (|S€D(f)[2) is simply
the power spectrum of the physical signal {|S(f)|?) multiplied

with G(f)=|g(f)|*>. Upon Fourier transformation of Eq. (15),
we find

N

. A ;2
_ (diode,N)72 _(diode,N)72 ~2 n
G(f) = [N P 4 [1 - oSN Py E—HWH)Q
N
gngn’[l + (f/fII)(f/fn’)]
2
22 2+ (]
o ¢
+ za(diode,N)[l _ a,(diode,N)]CNz n (19)

n=0 I+ (f/fn)z .
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FIG. 4. Comparison of experimental data for the characteristic attenuation
function G(f) with theoretical models for G(f). Systematic deviations of
data points from the value of 1 reflect the low-pass filtering caused by the
photodiode. The legend gives the correspondence between symbols and la-
ser wavelengths. The theoretical attenuation function does not differ visibly
from the constant 1 for A <850 nm. (a) Insufficiency of model given in Egs.
(19), (11), and (13). Points: Blocked experimental spectra P©(f) for vari-
ous laser wavelengths, divided by Pyyq.(f). The parameters in Ppq,(f) were
determined from a fit to the spectra at low frequencies up to f,.,=2 or
5 kHz. Lines: G(f) of Eq. (19) with N=5. Parameter values were obtained
by fitting G(f) to 1064 nm data (with the outlier near 40 kHz excluded).
This noise peak is caused by some source in the building that we could not
get rid of. This results in f,=9.8+0.1 kHz, L=0.80£0.17 mm, and
LY9P=68+3 ym. The values for L and L) correspond to a!%°%=0.12 for
a wavelength of A=1064 nm. This fit is shown as the solid line through the
1064 nm data. Other lines use the same values for f;, L, and L), Upper
solid line: A=800 nm, long-dashed line: A=850 nm, short-dashed line:
A=900 nm, dotted line: A=932 nm, and dot-dashed line: A=1000 nm. (b)
Sufficiency of model given in Eq. (19), when used as a phenomenological
model without Egs. (11) and (13). Only two slowest relaxation modes are
needed, i.e., N=1. Same experimental data as in (a).

In this expression, we have introduced f,=1/(277,)
=(2n+1)?f,. In the case N=0, Eq. (19) reduces to the result
given in Ref. 10,

1— a(diode,0)2
1+ (fIfo)

where f; is the same as fgdfge) in Ref. 10.

The theoretical curves plotted in Fig. 4(a) are G(f) in
Eq. (19), with parameters L, L1%P) and f, determined by
fitting G(f) to the data taken with A\=1064 nm, and using
these values also when comparing G(f) to the data taken at
different wavelengths, while varying only the absorption co-

Go(f) — a(diode,O)Z + , (20)
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efficient a. The curves approximately follow the data. This
demonstrates that our simple physical model goes a long way
in describing what goes on, but also that we need to refine it
a little in order for it to be useful for precision calibration.

In the version discussed until now, we have assumed a
sharp boundary between a field-free n layer and a field-filled
depletion layer. This is not an exact rendition of reality, but a
good approximation, as long as one does not probe the spa-
tial structure of the diode with a resolution fine enough to
resolve the gradual transition between the n layer and the
depletion zone. When one increases f,,.x, higher relaxation
modes for the diffusion equation are needed to describe the
photodiode’s response function. The spatial components of
these relaxation modes are eigenfunctions for the Laplacian
operator, with a number of nodes equal to the index n. Thus,
as we increase f,,,, and with it our experimental time reso-
lution of the diode’s response function g(z), we consequently
increase also the resolution with which the experiment
probes the internal spatial geometry of the diode.

This calls for less ideal assumptions than those used
above. We replace the simple one-dimensional diffusion
equation, Eq. (7), by a diffusion equation in three dimen-
sions. We still treat the depletion zone as an absorbing
boundary on the region that we refer to as the n layer. We
also still treat the n layer as field-free, so no convective term
occurs in the diffusion equation. Doing this, and using the
fact that the n layer is a compact volume, we need not solve
the more complicated equation. We know from mathematical
spectral analysis that the solution for the density of holes can
be written as

[

t
p(x,,2,1) = po > by, eXp(— :)hn(x,y,z), (21)

n=0 n

where the functions h,(x,y,z) are unknown spatial eigen-
functions of the diffusion equation in the n layer. The values
of b, are restricted by normalization, but apart form this, b,
and b,, as well as 7,<7,,, are now treated as unrelated for
n<n'. Thus, the response of the diode retains the structure
of Egs. (15) and (19) with a discrete spectrum of well-
separated relaxation times, but the specific expressions in
Egs. (11) and (13) no longer hold.

Consequently, the theoretical expression, G(f)Phydro(f)
for the recorded spectrum remains valid, but the parameters
fnand £, in it are unknown a priori, and their values must be
chosen by fitting G(f) Ppyqro(f) to the experimental spectrum,
while respecting the normalization condition of ¢,. Figure
4(b) demonstrates that with the inclusion of only two modes
in the filtering function, we are able to fit the experimental
spectra very well.

V. DIODE PARAMETERS

Below, we fit the theoretical model G(f)Pyyaro(f) to re-
corded experimental spectra with f, and «(9°% as fitting
parameters. These parameters are related to the dimensions
of the diode as follows: From Eq. (12) we have
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7D
8L*
Since neither the diffusion coefficient for holes, D, nor the
depth of the n layer, L, depends on the laser wavelength, we
expect fits of our model to result in values for f that are
independent of the laser wavelength used to obtain the data
fitted to. The parameter %% denotes the fraction of light
that is detected “instantaneously” according to the physical
model.

With the coordinates shown in Fig. 3, the number of
holes created in the depletion layer is

Jo= (22)

0
J po exp(— az)dz = @{exp[aL(dep)] -1}, (23)
) a

_z/(dep

where L) is the thickness of the depletion layer. L(4P)
depends on the bias voltage applied across the photodiode
and it is not available from the manufacturer of the diode.
The number of charge carriers in the slowest N+ 1 relaxation
modes is

N A N
. (2n+1)77z] 2L

b ——|dz= b—m. 24

EO 0 ,,sm{ 2 L ‘ g "Cn+ ) (24)

The total number of holes created is

L
J po exp(— az)dz = P2fexp[aL ] - exp[- aLl}.
— L(dep) a

(25)

Thus, a'%°%) can be determined. From the results of Egs.
(23)—(25), the fraction of light detected instantaneously is
a,(diode,N)

{explal“P]—1}+ X {(ab,/p)[2L/((2n + D)m)]}

n=N+1

{exp[aL'P] - exp[- aL]}

{1 -exp[- al %Py
(1 —exp{—da[L+ L9’

where the last result holds for a sufficiently large value of N.

(26)

VI. DATA ANALYSIS

Power spectra for recorded positions of the bead were
calculated without the use of so-called windowing.24 Instead,
noise reduction was achieved by blocking,“’zé"25 i.e., block-
wise averaging. The recorded power spectra were then fitted
with the model spectra: In Ref. 11, the recorded experimental
spectrum was modeled with the filtered and aliased physical
spectrum. The physical spectrum is Pyyq(f;R/€) given in
Eq. (5), with R=450 nm in our case and €=10 um. The data
analyzed in the present article were recorded with a data
acquisition system that uses A—3, technology with 64 times
oversampling in its analogue to digital conversion (ADC).18
Consequently, there is no discernible aliasing to account for
in the experimental spectrum, and we did not account for
any. Filtering by the photodiode detection system we did
account for, as described in Eq. (15). The functional form of
any additional electronic filtering was unknown. So we
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FIG. 5. Lin-log plot of the histogram of values visited by one coordinate in
the position time series recorded with a laser wavelength of 900 nm (same
data as in Fig. 2), overlayed with a Gaussian of same width and height. The
inset shows the same histogram in a lin-lin plot.

looked for additional filters in the electronics in an indepen-
dent measurement with a signal generator. We found a flat
response below 80—90 kHz [see also Fig. 7(a)], and we con-
sequently restricted our analysis of the power spectrum to
frequencies below 80 kHz. We assumed that no filtering of
the physical spectrum took place below this frequency, ex-
cept the parasitic one in the photodiode. Combined with the
absence of aliasing, this means that the recorded spectrum
can be compared directly with the physical spectrum after
the latter has been filtered only by the parasitic filter in the
photodiode.

All data series analyzed were consistent with a Hookean
force, as assumed in the theory with which we analyzed the
data. An example is shown in Fig. 5.

VIl. RESULTS

We discuss first our fitting procedure, then present the
results.

A. Defining a good fit

All spectra were least-squares fitted with either Ppyq.,(f)
of Eq. (5) or with G(f)Ppyqro(f), with G(f) given in (19). To
judge whether a fit was acceptable or not, the
support/goodness—of—ﬁt24’26 was evaluated. The goodness of
fit will not reveal small systematic discrepancies between
theory and data as long as y* per degree of freedom is near 1.
To be able to detect such errors, we also construct “residual
plots” by dividing data values by fitted values, cf. Figs. 2(b),
6(a), and 7(a).

In least-squares fitting, each data point enters the expres-
sion for x* with a weight factor that depends on the error bar
on that point. More correctly, the weight factor depends on
the standard deviation of the Gaussian distribution with re-
spect to which the data points scatter about the expectation
value, the fitted function. This standard deviation is usually
estimated by the experimental error bar on the data point. We
know its value, however, hence need not estimate it. The
theory that gives the expectation value gives the standard
deviation as well, with no additional fitting parameters
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FIG. 6. Experimental power spectrum obtained with laser wavelength of
900 nm (same data as in Fig. 2) and fitted with one diffusion mode in the
parasitic filter, i.e., G(f)=G,(f) in Eq. (20). The frequency range of the fit
was [110 Hz,80 kHz]. (a) Residual plot of data/fit. The two horizontal lines
show a =1 standard deviation known from the theory. The backing of the fit
is 82%. Inset: Same residual plot of data/fit after a further block averaging
of data. Two horizontal lines show a +1 standard deviation according to
theory, here +1.7/mil. The data points scatter a little more than ideally
expected for normally distributed data. This may be because the data acqui-
sition board is slightly nonlinear, with ripples in its characteristic function of
max =0.005 dB amplitude, i.e., £1.3/mil. We have insufficient precision to
resolve such ripples in our power spectrum of the Brownian motion, but we
have reached the limit on achievable precision set by these ripples. (b)
Experimental power spectrum (data points with error bars) and fitted theory
with parasitic filter Gy(f) (solid line). (c) Histogram of N=3 X 10° experi-
mental power spectral values P(*(f,), measured in units of their expectation
values PfV(f,), the latter being the fit shown in panel (b). Dashed line:
exp(—x), the distribution that P©(f,)/PU(f,) should follow according to
theory (Ref. 11), and is seen here to do, indeed.
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FIG. 7. Experimental power spectrum obtained with a 1064 nm laser and
fitted with PU(f)=G(f)Ppyaro(f). using the phenomenological version of
G(f) in Eq. (19) without Egs. (11) and (13), and with just two diffusion
modes, N=1. The value of x* per degree of freedom is 1.023, resulting in a
backing of 10%. The maximum frequency fitted to was f,,,,=80 kHz. (a)
Residual plot. All data are shown, but only data of frequencies below
80 kHz (straight vertical line) were fitted to. The dots are P©X/P, Two
horizontal lines show a =1 standard deviation known from the theory for the
power spectrum. Note that the data points seem filtered with a roll-off fre-
quency near 90 kHz. Inset: Same residual plot of data/fit after a further
block averaging of data. Two horizontal lines show a *1 standard deviation
according to theory, here +2.4/mil. (b) Power spectrum vs frequency in a
log-log plot. Data points with error bars, most of which are too small to be
seen. The solid line is the fit. (c) Histogram of N=8 X 10° experimental
power spectral values P®¥(f,), measured in units of their expectation values
PU(f,), the latter being the fit shown in panel (b). Dashed line: exp(—x), the
theoretical distribution for PX(f,)/ PT(f,).

introduced," but with a small addition to X° so the quantity
minimized is F, in Ref. 11 [Eq. (E.7)]. In the following, we
accept or do not accept fits depending on their support and
their residual plots, and use the information from these fits to
draw conclusions about the model.
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TABLE I. Laser wavelengths and power spectrum frequencies for which the
position detection system is not a parasitic filter. Values for f,,,, for which
fits of Pyyar, to the experimental power spectra have at least 1% support.
Tested values of f,,,, were 2, 5, 10, 15, 25, 40, 60, and 80 kHz.

\ (nm) Simax (kHz)
750 <60
800 <60
850 <60
900 <60
915 <25
932 <10
944 <5
962 <5
984 <5

1000 <5

B. Results of fits

When fitting Ppyqro(f) o G(f)Phyaro(f) to experimental
data, we have the option to vary both the maximum fre-
quency fi fitted to and, for G(f) Ppyqr(f), also the number
N+1 of relaxation modes included in the description of the
response function of the diode.

1. Theory without parasitic filter

As apparent already from Fig. 2(b), even for the shortest
wavelengths investigated, no acceptable fit of Pyyq,, Was pos-
sible with f,,,,=80 kHz. Table I summarizes our results for
fits done without accounting for the diode’s parasitic filter.
We see that for frequencies up to at least 40 kHz, Pjyq.o(f)
describes the recorded spectrum for wavelengths up to
A=900 nm. So in this range the detection system is not an
unintended filter.

2. Theory with parasitic filter with only the slowest
diffusion mode included

With only the slowest relaxation mode included in the
description of parasitic filtering by the diode—e.g., with
G(f)=Gy(f) of Eq. (20)—we obtained fits with a support of
at least 1% for f,,,=80 kHz and for wavelengths up to
A=915 nm. An example is shown in Fig. 6. The quality of
the fit is demonstrated both through the support of 82% and
visually by the residual plot shown in panel (a) and the per-
fect exponential distribution shown in panel (c), cf. Ref. 11.
Figure 2 shows the result of an attempt to fit the same data
with Py, alone up to f,,,=80 kHz.

3. Theory with parasitic filter with all diffusion
modes, related by Eqs. (11) and (13)

For wavelengths larger than 915 nm, we investigated the
model assuming an infinitely sharp boundary between deple-
tion layer and n layer, i.e., with G(f) defined through
Eqgs. (19), (11), and (13). We varied the value of f,,,, and the
number of modes included in G(f). With f,;,,>20-30 kHz,
and for wavelengths larger than ~950 nm, no acceptable fits
were found. Residual plots like Fig. 2 showed systematic
deviations from the theory.
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4. Theory with phenomenological parasitic filter: Two
slowest modes are sufficient

We consequently dropped the assumption leading to Egs.
(11) and (13). Instead, we maintain the discrete spectrum of
relaxation times that is characteristic for diffusion out of any
compact region, but treat each relaxation time and its relative
importance as fitting parameters. As we shall see, physically
realistic values result from fitting these parameters. The use-
fulness of the model depends on more than its realism: It also
depends on whether the model makes so much more of the
power spectrum meaningful and interpretable that it is worth
the cost of the model’s extra parameters. It does, as we shall
see.

We found that with f,,, =80 kHz, fits with at least 1%
support can be obtained for the entire range of laser wave-
lengths available, and with the inclusion of only two relax-
ation modes in the description of the diode. Inclusion of
more modes did not improve the quality of the fits, which
is  consistent with f,~10 kHz—f;~90 kHz and
f>~250 kHz. Each extra mode adds two more parameters to
be fitted, f, and ¢, in Eq. (19), and all parameters were
determined only with larger errors for a fit of otherwise simi-
lar quality. Therefore, only fits with two relaxation modes are
considered below. Figure 7 shows a fit to data obtained with
the 1064 nm laser. This is the longest laser wavelength con-
sidered here, hence the case of lowest absorption coefficient
in the detector. The data consequently demonstrate the stron-
gest parasitic filtering considered here, and therefore demand
the most from our model for the phenomenon.

From this and similar fits, we determined values for the
parameters that describe the diode. These values are plotted
in Fig. 8. The trends in these data agree with expectations
based on known absorption characteristics of Si: In Fig. 8(a)
and 8(b), the solid curves show %% and Z,/({y+{,) ac-
cording to Eqgs. (10)=(13). The values used for L'%P and L
are fitted, since their exact values are proprietary informa-
tion. A total thickness of the diode of order 600 wm is, to our
knowledge, reasonable for typical diode-dimensions. Panels
(c) and (d) of the figure show that at wavelengths where the
values of f, and f; are well determined—i.e, where parasitic
filtering is significant—their values are roughly independent
of the wavelength, as expected from our physical model of
the phenomenon.

VIIl. DISCUSSION

When an infrared laser and a common silicon photodi-
ode are used together in a position detection system, the
photodiode is also an unintended low-pass filter. With
1064 nm light, 90% of the signal power is lost at 80 kHz;
with 900 nm light, 10% of the signal power is lost at 80 kHz;
see Fig. 4. The physics of this “parasitic filtering” phenom-
enon is understood, and is described by simple one-
dimensional diffusion out of a one-dimensional (1D) box
with an absorbing boundary. The physical dimensions of the
problem are such that only one or two exponential relaxation
modes are needed in order to describe the filter effect accu-
rately up to 160 kHz sampling frequency; see Figs. 6 and 7:
The 1% stochastic scatter in the experimental power spectral
values shown there is foo large for us to resolve any inad-
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FIG. 8. Fitting parameters that describe the photodiode, obtained from fits
with at least 1% support, shown as a function of wavelength. Squares: x
coordinate. Circles: y coordinate. Open symbols: two diffusional modes in
the diode filter. Filled symbols: one diffusional mode in the diode filter. (a)
The relative amount /%) of the position signal that is detected instantly as
a function of laser wavelength. The solid line shows a fit of the theory in Eq.
(26). It resulted in LUP=128+1 um and L=458+31 um. (b) The relative
importance of the slowest relaxation mode in the parasitic filter, shown as its
relative amplitude {y/({y+¢;). The solid line shows this ratio for the theory
fitted as in (a). [(c) and (d)] Frequencies of the Oth and 1st mode in the diode
filter, resulting from fits at various wavelengths. These values are approxi-
mately independent of the wavelength, as expected. Note the higher value of
fo for 915 nm, obtained in fits with only one mode included.

equacies in our description of the parasitic filter’s character-
istic function! Thus the filter characteristics in Eq. (20) with
N=0or 1 is all it takes to extend the useful bandwidth of this
type of position detection system, typical for optical twee-
zers, from as low as 1 kHz and up to 80 kHz and possibly
beyond. The upper limit in frequency encountered in the
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present article is not set by our description, but by the elec-
tronics used.

A number of alternative photodetectors, of different ma-
terial or construction, have been applied over the last couple
of yearss’12 in optical tweezers systems, where infrared lasers
are used for position detection. Such detectors provide a
large increase in the useful bandwidth, independent of the
procedure of analysis. Interestingly, however, and currently
unexplained, signs of parasitic filtering with a 3 dB fre-
quency of order 70 kHz have also been observed in experi-
ments where 1064 nm light was detected by an InGaAs
diode.” The instrumental (electronic) bandwidth of detection
should not be confused with the filtering intrinsic to the ex-
periment itself, which we do not discuss here. For example,
the motions of a single motor protein molecule attached to an
optically trapped bead, will be low-pass filtered by the me-
chanical response of the bead in a viscous solvent.”!

In summary, we have demonstrated here how the elec-
tronic bandwidth of detection for even common silicon pho-
todetectors used with near IR lasers can be increased to fre-
quencies approaching 0.1 MHz with high precision and have
provided the tools of analysis necessary to achieve this.
These tools can be easily adapted to similar situations com-
monly encountered in modern optical trapping experiments.

ACKNOWLEDGMENTS

This work was funded by a VIDI grant from the Re-
search Council for Earth and Life Sciences (ALW) to one of
the authors (E.J.G.P.) and grants from the Foundation for
Fundamental Research on Matter (FOM), both with financial
support from the Netherlands Organization for Scientific Re-
search (NWO). Another author (K.B.S.) was funded by the
Danish Research Councils and the Carlsberg Foundation.
The authors thank the Colloid Synthesis Facility, Utrecht
University for kindly providing silica beads and Meindert
van Dijk for involvement in the early stages of this project.

'G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
%s. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma,

Rev. Sci. Instrum. 77, 063106 (2006)

M. Longmire, and J. Gurley, J. Appl. Phys. 65, 164 (1989).

3A. D. Mehta, J. T. Finer, and J. A. Spudich, Methods Cell Biol. 55, 47
(1998).

4F. Gittes and C. F. Schmidt, Opt. Lett. 23, 7 (1998).

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).

G. Lutz, Semiconductor Radiation Detectors (Springer-Verlag, Berlin
Heidelberg, 1999).

C. Yang, D. N. Jamieson, S. M. Hearne, C. I. Pakes, B. Rout, E. Gauja, A.
J. Dzurak, and R. G. Clark, Nucl. Instrum. Methods Phys. Res. B 190,
212 (2002).

SR, Gittes, B. Schnurr, P. D. Olmsted, F. C. MacKintosh, and C. F. Schmidt,
Phys. Rev. Lett. 79, 3286 (1997).

’c. Veigel, M. L. Bartoo, D. C. W. White, J. C. Sparrow, and J. E. Molloy,
Biophys. J. 75, 1424 (1998).

K. Berg-Sgrensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, J. Appl.
Phys. 93, 3167 (2003).

K. Berg-Sgrensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004);
erratum (to be submitted).

2g 1 G. Peterman, M. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev.
Sci. Instrum. 74, 3246 (2003).

BM. T Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, Biophys. J. 83,
491 (2002).

Mg, Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D.
Chatenay, Phys. Rev. Lett. 85, 457 (2000).

'5I. M. Toli¢-Ngrrelykke, E.-L. Munteanu, G. Thon, L. Oddershede, and K.
Berg-Sgrensen, Phys. Rev. Lett. 93, 078102 (2004).

oM, Atakhorrami, G. H. Koenderink, C. F. Schmidt, and F. C. MacKintosh,
Phys. Rev. Lett. 95, 208302 (2005).

M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F.
Schmidt, Biophys. J. 74, 1074 (1998).

8 AD7722 Datasheet, Rev. 0, 1996.

“R. Kubo, M. Toda, and N. Hashitsume, Staristical Physics (Springer-
Verlag, Heidelberg, 1985), Vol. 2.

20K, Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23,
247 (1994).

2'F. Gittes and C. F. Schmidt, Methods Cell Biol. 55, 129 (1998).

22H. Flyvbjerg, (unpublished).

ZA. S. Grove, Physics and technology of semiconductor devices (Wiley,
New York, 1967).

XW. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes (Cambridge University Press, Cambridge, England,
1986).

#H. Flyvbjerg, and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).

N C. Barford, Experimental Measurements: Precision, Error and Truth,
2nd ed. (Wiley, New York, 1986).

2T Photodiode Characteristics, UDT Sensors Inc., 2002, www.udt.com

BK. Berg-Sgrensen, E. J. G. Peterman, L. Oddershede, M. van Dijk, E.-L.
Florin, C. F. Schmidt, and H. Flyvbjerg, Proc. SPIE 5514, 419 (2004).

Downloaded 13 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



