305 research outputs found

    A three-arm single blind randomised control trial of naïve medical students performing a shoulder joint clinical examination

    Get PDF
    Background Technological advances have previously been hailed as a new dawn in Higher Education, with the advent of ‘massive open online courses’ (MOOCs) and online learning. Virtual platforms have potential advantages such as accessibility and availability but simply transferring educational material to the online environment may not ensure high quality learning. Clinical examination is a fundamental principle of medical assessment, and this study aimed to assess the role of technology in teaching these skills. Aims/objectives To determine whether three teaching modalities were of equal efficacy in teaching examination of the shoulder joint to naïve medical students. Methods Sixty-seven pre-clinical medical students naïve to large joint examination were recruited. Participants completed a learning style questionnaire and were then block randomised to three study: textbook study, face-to-face seminar, or video tutorial via online platform. The same examination technique was taught in all groups, with the intervention being the method of delivery All second year students were eligible for inclusion. The single exclusion criteria was previous exposure to clinical examination teaching. Students were assessed using a standardised scoring system at baseline (pre-intervention), and days 5 and 19 post-intervention (maximum score 30). Assessors were blinded to group allocation. The primary outcome was assessment score at day 5 post intervention. Results There was no difference between the three groups at baseline assessment (mean scores 2.4 for textbook, 2.8 for face-to-face, and 3.1 for video; p = 0.267). Mean post-intervention scores were 16.5 textbook, 25.5 face-to-face, and 22.4 video (p < 0.001, η2 = .449). There was no change between day 5 and day 19 post-intervention assessment scores in any group (p = 0.373), Preferred learning style did not affect scores (p = 0.543). Conclusion Face-to-face teaching was the most effective method for teaching clinical examination of the shoulder. Technology can potentially increase accessibility and remove geographic barriers, but is not as effective if teaching techniques are simply mirrored in an online format. Online platforms allow in depth data analysis of how learners interact with educational material and this may have value in improving the design of online educational materials, and is a potential area for further research

    The dynamics of risk perceptions and precautionary behavior in response to 2009 (H1N1) pandemic influenza

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trajectory of an infectious disease outbreak is affected by the behavior of individuals, and the behavior is often related to individuals' risk perception. We assessed temporal changes and geographical differences in risk perceptions and precautionary behaviors in response to H1N1 influenza.</p> <p>Methods</p> <p>1,290 US adults completed an online survey on risk perceptions, interests in pharmaceutical interventions (preventive intervention and curative intervention), and engagement in precautionary activities (information seeking activities and taking quarantine measures) in response to H1N1 influenza between April 28 and May 27 2009. Associations of risk perceptions and precautionary behaviors with respondents' sex, age, and household size were analyzed. Linear and quadratic time trends were assessed by regression analyses. Geographic differences in risk perception and precautionary behaviors were evaluated. Predictors of willingness to take pharmaceutical intervention were analyzed.</p> <p>Results</p> <p>Respondents from larger households reported stronger interest in taking medications and engaged in more precautionary activities, as would be normatively predicted. Perceived risk increased over time, whereas interest in pharmaceutical preventive interventions and the engagement in some precautionary activities decreased over time. Respondents who live in states with higher H1N1 incidence per population perceived a higher likelihood of influenza infection, but did not express greater interests in pharmaceutical interventions, nor did they engage in a higher degree of precautionary activities. Perceived likelihood of influenza infection, willingness to take medications and engagement in information seeking activities were higher for women than men.</p> <p>Conclusions</p> <p>Perceived risk of infection and precautionary behavior can be dynamic in time, and differ by demographic characteristics and geographical locations. These patterns will likely influence the effectiveness of disease control measures.</p

    A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm

    Get PDF
    Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus

    Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group.

    Get PDF
    BACKGROUND: The arthropod class Diplopoda is a mega-diverse group comprising >12,000 described millipede species. The history of taxonomic research within the group is tumultuous and, consequently, has yielded a questionable higher-level classification. Few higher-taxa are defined using synapomorphies, and the practice of single taxon descriptions lacking a revisionary framework has produced many monotypic taxa. Additionally, taxonomic and geographic biases render global species diversity estimations unreliable. We test whether the ordinal taxa of the Diplopoda are consistent with regards to underlying taxonomic diversity, attempt to provide estimates for global species diversity, and examine millipede taxonomic effort at a global geographic scale. METHODOLOGY/PRINCIPAL FINDINGS: A taxonomic distinctness metric was employed to assess uniformity of millipede ordinal taxa. We found that ordinal-level taxa are not uniform and are likely overinflated with higher-taxa when compared to related groups. Several methods of estimating global species richness were employed (Bayesian, variation in taxonomic productivity, extrapolation from nearly fully described taxa). Two of the three methods provided estimates ranging from 13,413-16,760 species. Variations in geographic diversity show biases to North America and Europe and a paucity of works on tropical taxa. CONCLUSIONS/SIGNIFICANCE: Before taxa can be used in an extensible way, they must be definable with respect to the diversity they contain and the diagnostic characters used to delineate them. The higher classification for millipedes is shown to be problematic from a number of perspectives. Namely, the ordinal taxa are not uniform in their underlying diversity, and millipedes appear to have a disproportionate number of higher-taxa. Species diversity estimates are unreliable due to inconsistent taxonomic effort at temporal, geographic, and phylogenetic scales. Lack of knowledge concerning many millipede groups compounds these issues. Diplopods are likely not unique in this regard as these issues may persist in many other diverse yet poorly studied groups

    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next-Generation Sequence Analyses

    Get PDF
    Background The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered. The timings of major millipede lineage divergence points were estimated. Results The resulting phylogeny differed from the existing classifications in a number of fundamental ways. Our phylogeny includes a grouping that has never been described (Juliformia+Merocheta+Stemmiulida), and the ancestral reconstructions suggest caution with respect to using spinnerets as a unifying characteristic for the Nematophora. Our results are shown to have significantly stronger support than previous hypotheses given our data. Our efforts represent the first step toward obtaining a well-supported and robust phylogeny of the Diplopoda that can be used to answer many questions concerning the evolution of this ancient and diverse animal group

    Step-wise evolution of complex chemical defenses in millipedes: a phylogenomic approach

    Get PDF
    With fossil representatives from the Silurian capable of respiring atmospheric oxygen, millipedes are among the oldest terrestrial animals, and likely the first to acquire diverse and complex chemical defenses against predators. Exploring the origin of complex adaptive traits is critical for understanding the evolution of Earth’s biological complexity, and chemical defense evolution serves as an ideal study system. The classic explanation for the evolution of complexity is by gradual increase from simple to complex, passing through intermediate “stepping stone� states. Here we present the first phylogenetic-based study of the evolution of complex chemical defenses in millipedes by generating the largest genomic-based phylogenetic dataset ever assembled for the group. Our phylogenomic results demonstrate that chemical complexity shows a clear pattern of escalation through time. New pathways are added in a stepwise pattern, leading to greater chemical complexity, independently in a number of derived lineages. This complexity gradually increased through time, leading to the advent of three distantly related chemically complex evolutionary lineages, each uniquely characteristic of each of the respective millipede groups

    Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships

    Get PDF
    Background Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. Results The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. Conclusions The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships

    Methanobactin and the Link Between Copper and Bacterial Methane Oxidation

    Get PDF
    Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu2+ to Cu1+. In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs

    Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood.</p> <p>Method</p> <p>The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS.</p> <p>Results</p> <p>Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP.</p> <p>Conclusions</p> <p>Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.</p

    Comparing the effectiveness of monetary versus moral motives in environmental campaigning

    Get PDF
    Environmental campaigns often promote energy conservation by appealing to economic (for example, lower electricity bills) rather than biospheric concerns (for example, reduced carbon emissions), assuming that people are primarily motivated by economic self-interest. However, people also care about maintaining a favourable view of themselves (they want to maintain a 'positive self-concept'), and may prefer to see themselves as 'green' rather than 'greedy'. Consequently, people may find economic appeals less attractive than biospheric appeals. Across two studies, participants indicated feeling better about biospheric ('Want to protect the environment? Check your car's tire pressure') than economic ('Want to save money? Check your car's tire pressure') tyre-check appeals. In a field experiment, we found that an economic tyre-check appeal ('Do you care about your finances? Get a free tire check') elicited significantly less compliance than parallel biospheric and neutral appeals. Together, these studies discredit the conventional wisdom that appealing to economic self-interest is the best way to secure behaviour change. At least in some cases, our studies suggest, this strategy is not effective.</p
    corecore