10,702 research outputs found
Air-sea transfer of gas phase controlled compounds
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer
Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects
Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long‐term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow‐water stages (VSWS, water depths 0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed‐level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro‐topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes
Nonlinearity of Mechanochemical Motions in Motor Proteins
The assumption of linear response of protein molecules to thermal noise or
structural perturbations, such as ligand binding or detachment, is broadly used
in the studies of protein dynamics. Conformational motions in proteins are
traditionally analyzed in terms of normal modes and experimental data on
thermal fluctuations in such macromolecules is also usually interpreted in
terms of the excitation of normal modes. We have chosen two important protein
motors - myosin V and kinesin KIF1A - and performed numerical investigations of
their conformational relaxation properties within the coarse-grained elastic
network approximation. We have found that the linearity assumption is deficient
for ligand-induced conformational motions and can even be violated for
characteristic thermal fluctuations. The deficiency is particularly pronounced
in KIF1A where the normal mode description fails completely in describing
functional mechanochemical motions. These results indicate that important
assumptions of the theory of protein dynamics may need to be reconsidered.
Neither a single normal mode, nor a superposition of such modes yield an
approximation of strongly nonlinear dynamics.Comment: 10 pages, 6 figure
Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality
A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites
Nuclear Quadrupole Hyperfine Structure in HC14N/H14NC and DC15N/D15NC Isomerization: A Diagnostic Tool for Characterizing Vibrational Localization
Large-amplitude molecular motions which occur during isomerization can cause
significant changes in electronic structure. These variations in electronic
properties can be used to identify vibrationally-excited eigenstates which are
localized along the potential energy surface. This work demonstrates that
nuclear quadrupole hyperfine interactions can be used as a diagnostic marker of
progress along the isomerization path in both the HC14N/H14NC and DC15N/D15NC
chemical systems. Ab initio calculations at the CCSD(T)/cc-pCVQZ level indicate
that the hyperfine interaction is extremely sensitive to the chemical bonding
of the quadrupolar 14N nucleus and can therefore be used to determine in which
potential well the vibrational wavefunction is localized. A natural bonding
orbital analysis along the isomerization path further demonstrates that
hyperfine interactions arise from the asphericity of the electron density at
the quadrupolar nucleus. Using the CCSD(T) potential surface, the quadrupole
coupling constants of highly-excited vibrational states are computed from a
one-dimensional internal coordinate path Hamiltonian. The excellent agreement
between ab initio calculations and recent measurements demonstrates that
nuclear quadrupole hyperfine structure can be used as a diagnostic tool for
characterizing localized HCN and HNC vibrational states.Comment: Accepted by Physical Chemistry Chemical Physic
WiseEye: next generation expandable and programmable camera trap platform for wildlife research
Funding: The work was supported by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. The work of S. Newey and RJI was part funded by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS). Details published as an Open Source Toolkit, PLOS Journals at: http://dx.doi.org/10.1371/journal.pone.0169758Peer reviewedPublisher PD
Sub-Sets of Cancer Stem Cells Differ Intrinsically in Their Patterns of Oxygen Metabolism
PMCID: PMC3640080This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
How and why DNA barcodes underestimate the diversity of microbial eukaryotes
Background: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. Principal Findings: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependant. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. Conclusions: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous ''cryptic species'' will become discernable with the future acquisition of genomic and metagenomic sequences
The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.
BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury
Structure and Transport in Coatings from Multiscale Computed Tomography of Coatings-New Perspectives for Eelectrochemical Impedance Spectroscopy Modeling?
Computed Tomography (CT) is an approach that has been extensively applied in many areas of science from understanding structures in living organisms to materials science. In materials science, the study of structures within coatings presents challenges on at least two different levels. First, the structure of the coatings needs to be understood from the atomic scale, where dissolution reactions begin, up to length scales which cover the aggregation of inhibitors and other additives, which take place at ∼10−5 m, i.e. 4 to 5 orders of magnitude. CT is a favourable imaging technique since it allows multiscale information to be obtained non-destructively down to tens of nanometres. In this study X-ray absorption contrast imaging has been used to examine structures created using strontium chromate (SrCrO4) particles embedded in an epoxy film. It has been found that SrCrO4 particles can form clusters that extend a few hundred microns in the plane of the film, span the thickness of the film and have fractal characteristics. There are also volumes of low density epoxy of similar sizes and characteristics to the SrCrO4 clusters. The SrCrO4 clusters have a strong influence on the leaching behaviour since the release changes with time. Initially, leaching is controlled by direct dissolution but, as the clusters dissolve, the release is dominated by the fractal dimension of the cluster. The dissolved clusters leave behind voids filled with electrolyte that provide alternative transport pathways for corrosive ions through the polymer. In this paper, the nature of these clusters will be reviewed and the implication for transport properties and electrochemical assessment will be explored
- …
