546 research outputs found

    Presentation of Primary Open Angle Glaucoma (POAG) at Lions Sight First Eye Hospital in Blantyre, Malawi

    Get PDF
    ObjectivePrimary open angle glaucoma (POAG) is the most common type of glaucoma in Africa. We carried out a study to  determine the clinical presentation pattern of patients with primary open angle glaucoma (POAG) at a tertiary  hospital in Malawi.DesignA cross-sectional studySettingLions Sight First Eye Hospital—a major referral and teaching state eye hospital in Blantyre, MalawiSubjectsStudy participants were newly diagnosed POAG patients at specialist eye clinic during study period.ResultsA total of 60 POAG patients were recruited into the study. The mean age was 58.7 years (SD= 16.6, range 18 - 86). There were more male (44, 73.3%) than female (16, 27.7%) patients. The majority of patients (73%) presented  one year after onset of visual symptoms. Twenty-six patients (43%) had unilateral blindness (visual acuity < 3/60; WHO classification), while nine patients (15%) presented with bilateral blindness. A vertical cup-to-disc ratio (CDR) of 0.8 or worse was seen in 92 eyes (79%). The mean intraocular pressure (IOP) reading was 35.5 mmHg (SD 13.30). Of the thirty-three eyes that successfully underwent visual field analysis, very advanced defects were recorded in 12 eyes (36%).ConclusionThis study demonstrates delayed presentation and male predominance among POAG patients at a tertiary eye hospital in Malawi. Glaucoma intervention programmes should aim at identifying patients with treatable glaucoma with particular attention to women

    Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    Get PDF
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components

    Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We studied the RNA expression of the genes in response to glucose from 5 mM (condition of normoglycemia) to 20 mM (condition of hyperglycemia/diabetes) by microarray analysis in breast cancer derived cell line MDA-MB-231. We identified the thioredoxin-interacting protein (TXNIP), whose RNA level increased as a gene product particularly sensitive to the variation of the level of glucose in culture media. We investigated the kinesis of the TXNIP RNA and protein in response to glucose and the relationship between this protein and the related thioredoxin (TRX) in regulating the level of reactive oxygen species (ROS) in MDA-MB-231 cells.</p> <p>Methods</p> <p>MDA-MB-231 cells were grown either in 5 or 20 mM glucose chronically prior to plating. For glucose shift (5/20), cells were plated in 5 mM glucose and shifted to 20 mM at time 0. Cells were analyzed with Affymetrix Human U133A microarray chip and gene expression profile was obtained. Semi-quantitative RT-PCR and Western blot was used to validate the expression of TXNIP RNA and protein in response to glucose, respectively. ROS were detected by CM-H2DCFDA (5–6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate) and measured for mean fluorescence intensity with flow cytometry. TRX activity was assayed by the insulin disulfide reducing assay.</p> <p>Results</p> <p>We found that the regulation of TXNIP gene expression by glucose in MDA-MB-231 cells occurs rapidly within 6 h of its increased level (20 mM glucose) and persists through the duration of the conditions of hyperglycemia. The increased level of TXNIP RNA is followed by increased level of protein that is associated with increasing levels of ROS and reduced TRX activity. The inhibition of the glucose transporter GLUT1 by phloretin notably reduces TXNIP RNA level and the inhibition of the p38 MAP kinase activity by SB203580 reverses the effects of TXNIP on ROS-TRX activity.</p> <p>Conclusion</p> <p>In this study we show that TXNIP is an oxidative stress responsive gene and its expression is exquisitely regulated by glucose level in highly metastatic MDA-MB-231 cells.</p

    Oligomeric Structure of the MALT1 Tandem Ig-Like Domains

    Get PDF
    Mucosa-associated lymphoid tissue 1 (MALT1) plays an important role in the adaptive immune program. During TCR- or BCR-induced NF-κB activation, MALT1 serves to mediate the activation of the IKK (IκB kinase) complex, which subsequently regulates the activation of NF-κB. Aggregation of MALT1 is important for E3 ligase activation and NF-κB signaling.Unlike the isolated CARD or paracaspase domains, which behave as monomers, the tandem Ig-like domains of MALT1 exists as a mixture of dimer and tetramer in solution. High-resolution structures reveals a protein-protein interface that is stabilized by a buried surface area of 1256 Å(2) and contains numerous hydrogen and salt bonds. In conjunction with a second interface, these interactions may represent the basis of MALT1 oligomerization.The crystal structure of the tandem Ig-like domains reveals the oligomerization potential of MALT1 and a potential intermediate in the activation of the adaptive inflammatory pathway.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Diabetes Is the Main Factor Accounting for Hypomagnesemia in Obese Subjects

    Get PDF
    OBJECTIVE: Type 2 diabetes (T2DM) and obesity are associated with magnesium deficiency. We aimed to determine whether the presence of type 2 diabetes and the degree of metabolic control are related to low serum magnesium levels in obese individuals. METHODS: A) Case-control study: 200 obese subjects [50 with T2DM (cases) and 150 without diabetes (controls)] prospectively recruited. B) Interventional study: the effect of bariatric surgery on serum magnesium levels was examined in a subset of 120 obese subjects (40 with type 2 diabetes and 80 without diabetes). RESULTS: Type 2 diabetic patients showed lower serum magnesium levels [0.75±0.07 vs. 0.81±0.06 mmol/L; mean difference -0.06 (95% CI -0.09 to -0.04); p<0.001] than non-diabetic patients. Forty-eight percent of diabetic subjects, but only 15% of non-diabetic subjects showed a serum magnesium concentration lower than 0.75 mmol/L. Significant negative correlations between magnesium and fasting plasma glucose, HbA1c, HOMA-IR, and BMI were detected. Multiple linear regression analysis showed that fasting plasma glucose and HbA1c independently predicted serum magnesium. After bariatric surgery serum magnesium increased only in those patients in whom diabetes was resolved, but remain unchanged in those who not, without difference in loss weight between groups. Changes in serum magnesium negatively correlated with changes in fasting plasma glucose and HbA1c. Absolute changes in HbA1c independently predicted magnesium changes in the multiple linear regression analysis. CONCLUSIONS: Our results provide evidence that the presence of diabetes and the degree of metabolic control are essential in accounting for the lower levels of magnesium that exist in obese subjects

    Contributions to the phylogeny of Ixodes (Pholeoixodes) canisuga, I. (Ph.) kaiseri, I. (Ph.) hexagonus and a simple pictorial key for the identification of their females

    Get PDF
    Background: In Europe, hard ticks of the subgenus Pholeoixodes (Ixodidae: Ixodes) are usually associated with burrow-dwelling mammals and terrestrial birds. Reports of Pholeoixodes spp. from carnivores are frequently contradictory, and their identification is not based on key diagnostic characters. Therefore, the aims of the present study were to identify ticks collected from dogs, foxes and badgers in several European countries, and to reassess their systematic status with molecular analyses using two mitochondrial markers. Results: Between 2003 and 2017, 144 Pholeoixodes spp. ticks were collected in nine European countries. From accurate descriptions and comparison with type-materials, a simple illustrated identification key was compiled for adult females, by focusing on the shape of the anterior surface of basis capituli. Based on this key, 71 female ticks were identified as I. canisuga, 21 as I. kaiseri and 21 as I. hexagonus. DNA was extracted from these 113 female ticks, and from further 31 specimens. Fragments of two mitochondrial genes, cox1 (cytochrome c oxidase subunit 1) and 16S rRNA, were amplified and sequenced. Ixodes kaiseri had nine unique cox1 haplotypes, which showed 99.2-100% sequence identity, whereas I. canisuga and I. hexagonus had eleven and five cox1 haplotypes, respectively, with 99.5-100% sequence identity. The distribution of cox1 haplotypes reflected a geographical pattern. Pholeoixodes spp. ticks had fewer 16S rRNA haplotypes, with a lower degree of intraspecific divergence (99.5-100% sequence identity) and no geographical clustering. Phylogenetic analyses were in agreement with morphology: I. kaiseri and I. hexagonus (with the similar shape of the anterior surface of basis capituli) were genetically more closely related to each other than to I. canisuga. Phylogenetic analyses also showed that the subgenus Eschatocephalus (bat ticks) clustered within the subgenus Pholeoixodes. Conclusions: A simple, illustrated identification key is provided for female Pholeoixodes ticks of carnivores (including I. hexagonus and I. rugicollis) to prevent future misidentification of these species. It is also shown that I. kaiseri is more widespread in Europe than previously thought. Phylogenetic analyses suggest that the subgenus Pholeoixodes is not monophyletic: either the subgenus Eschatocephalus should be included in Pholeoixodes, or the latter subgenus should be divided, which is a task for future studies

    Reconciling carbon-cycle concepts, terminology, and methods

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production
    corecore