214 research outputs found

    Entropy production in phase field theories

    Full text link
    Allen-Cahn (Ginzburg-Landau) dynamics for scalar fields with heat conduction is treated in rigid bodies using a non-equilibrium thermodynamic framework with weakly nonlocal internal variables. The entropy production and entropy flux is calculated with the classical method of irreversible thermodynamics by separating full divergences.Comment: 5 pages, no figure

    POD for optimal control of the Cahn-Hilliard system using spatially adapted snapshots

    Full text link
    The present work considers the optimal control of a convective Cahn-Hilliard system, where the control enters through the velocity in the transport term. We prove the existence of a solution to the considered optimal control problem. For an efficient numerical solution, the expensive high-dimensional PDE systems are replaced by reduced-order models utilizing proper orthogonal decomposition (POD-ROM). The POD modes are computed from snapshots which are solutions of the governing equations which are discretized utilizing adaptive finite elements. The numerical tests show that the use of POD-ROM combined with spatially adapted snapshots leads to large speedup factors compared with a high-fidelity finite element optimization

    Current-density functional theory of time-dependent linear response in quantal fluids: recent progress

    Full text link
    Vignale and Kohn have recently formulated a local density approximation to the time-dependent linear response of an inhomogeneous electron system in terms of a vector potential for exchange and correlation. The vector potential depends on the induced current density through spectral kernels to be evaluated on the homogeneous electron-gas. After a brief review of their theory, the case of inhomogeneous Bose superfluids is considered, with main focus on dynamic Kohn-Sham equations for the condensate in the linear response regime and on quantal generalized hydrodynamic equations in the weak inhomogeneity limit. We also present the results of calculations of the exchange-correlation spectra in both electron and superfluid boson systems.Comment: 12 pages, 2 figures, Postscript fil

    Single vortex-antivortex pair in an exciton polariton condensate

    Full text link
    In a homogeneous two-dimensional system at non-zero temperature, although there can be no ordering of infinite range, a superfluid phase is predicted for a Bose liquid. The stabilization of phase in this superfluid regime is achieved by the formation of bound vortex-antivortex pairs. It is believed that several different systems share this common behaviour, when the parameter describing their ordered state has two degrees of freedom, and the theory has been tested for some of them. However, there has been no direct experimental observation of the phase stabilization mechanism by a bound pair. Here we present an experimental technique that can identify a single vortex-antivortex pair in a two-dimensional exciton polariton condensate. The pair is generated by the inhomogeneous pumping spot profile, and is revealed in the time-integrated phase maps acquired using Michelson interferometry, which show that the condensate phase is only locally disturbed. Numerical modelling based on open dissipative Gross-Pitaevskii equation suggests that the pair evolution is quite different in this non-equilibrium system compared to atomic condensates. Our results demonstrate that the exciton polariton condensate is a unique system for studying two-dimensional superfluidity in a previously inaccessible regime

    Impact of resonance decays on critical point signals in net-proton fluctuations

    Full text link
    The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays on critical fluctuations. We show that resonance effects reduce the signatures of critical fluctuations, but that for reasonable parameter choices critical effects in the net-proton cumulants survive. The relative role of resonance decays has a weak dependence on the order of the cumulants studied with a slightly stronger suppression of critical effects for higher-order cumulants

    Thermally fluctuating superconductors in two dimensions

    Full text link
    We describe the different regimes of finite temperature dynamics in the vicinity of a zero temperature superconductor to insulator quantum phase transition in two dimensions. New results are obtained for a low temperature phase-only hydrodynamics, and for the intermediate temperature quantum-critical region. In the latter case, we obtain a universal relationship between the frequency-dependence of the conductivity and the value of the d.c. resistance.Comment: Presentation completely revised; 4 pages, 2 figure

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Berezinskii-Kosterlitz-Thouless Crossover in a Trapped Atomic Gas

    Full text link
    Any state of matter is classified according to its order, and the kind of order a physical system can posses is profoundly affected by its dimensionality. Conventional long-range order, like in a ferromagnet or a crystal, is common in three-dimensional (3D) systems at low temperature. However, in two-dimensional (2D) systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature. Consequently, in contrast to the 3D case, a uniform 2D fluid of identical bosons cannot undergo Bose-Einstein condensation. Nevertheless, it can form a "quasi-condensate" and become superfluid below a finite critical temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulations. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems.Comment: accepted for publication in Natur
    corecore