214 research outputs found
Entropy production in phase field theories
Allen-Cahn (Ginzburg-Landau) dynamics for scalar fields with heat conduction
is treated in rigid bodies using a non-equilibrium thermodynamic framework with
weakly nonlocal internal variables. The entropy production and entropy flux is
calculated with the classical method of irreversible thermodynamics by
separating full divergences.Comment: 5 pages, no figure
POD for optimal control of the Cahn-Hilliard system using spatially adapted snapshots
The present work considers the optimal control of a convective Cahn-Hilliard
system, where the control enters through the velocity in the transport term. We
prove the existence of a solution to the considered optimal control problem.
For an efficient numerical solution, the expensive high-dimensional PDE systems
are replaced by reduced-order models utilizing proper orthogonal decomposition
(POD-ROM). The POD modes are computed from snapshots which are solutions of the
governing equations which are discretized utilizing adaptive finite elements.
The numerical tests show that the use of POD-ROM combined with spatially
adapted snapshots leads to large speedup factors compared with a high-fidelity
finite element optimization
Current-density functional theory of time-dependent linear response in quantal fluids: recent progress
Vignale and Kohn have recently formulated a local density approximation to
the time-dependent linear response of an inhomogeneous electron system in terms
of a vector potential for exchange and correlation. The vector potential
depends on the induced current density through spectral kernels to be evaluated
on the homogeneous electron-gas. After a brief review of their theory, the case
of inhomogeneous Bose superfluids is considered, with main focus on dynamic
Kohn-Sham equations for the condensate in the linear response regime and on
quantal generalized hydrodynamic equations in the weak inhomogeneity limit. We
also present the results of calculations of the exchange-correlation spectra in
both electron and superfluid boson systems.Comment: 12 pages, 2 figures, Postscript fil
Single vortex-antivortex pair in an exciton polariton condensate
In a homogeneous two-dimensional system at non-zero temperature, although
there can be no ordering of infinite range, a superfluid phase is predicted for
a Bose liquid. The stabilization of phase in this superfluid regime is achieved
by the formation of bound vortex-antivortex pairs. It is believed that several
different systems share this common behaviour, when the parameter describing
their ordered state has two degrees of freedom, and the theory has been tested
for some of them. However, there has been no direct experimental observation of
the phase stabilization mechanism by a bound pair. Here we present an
experimental technique that can identify a single vortex-antivortex pair in a
two-dimensional exciton polariton condensate. The pair is generated by the
inhomogeneous pumping spot profile, and is revealed in the time-integrated
phase maps acquired using Michelson interferometry, which show that the
condensate phase is only locally disturbed. Numerical modelling based on open
dissipative Gross-Pitaevskii equation suggests that the pair evolution is quite
different in this non-equilibrium system compared to atomic condensates. Our
results demonstrate that the exciton polariton condensate is a unique system
for studying two-dimensional superfluidity in a previously inaccessible regime
Impact of resonance decays on critical point signals in net-proton fluctuations
The non-monotonic beam energy dependence of the higher cumulants of
net-proton fluctuations is a widely studied signature of the conjectured
presence of a critical point in the QCD phase diagram. In this work we study
the effect of resonance decays on critical fluctuations. We show that resonance
effects reduce the signatures of critical fluctuations, but that for reasonable
parameter choices critical effects in the net-proton cumulants survive. The
relative role of resonance decays has a weak dependence on the order of the
cumulants studied with a slightly stronger suppression of critical effects for
higher-order cumulants
Thermally fluctuating superconductors in two dimensions
We describe the different regimes of finite temperature dynamics in the
vicinity of a zero temperature superconductor to insulator quantum phase
transition in two dimensions. New results are obtained for a low temperature
phase-only hydrodynamics, and for the intermediate temperature quantum-critical
region. In the latter case, we obtain a universal relationship between the
frequency-dependence of the conductivity and the value of the d.c. resistance.Comment: Presentation completely revised; 4 pages, 2 figure
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Dynamics and transport near quantum-critical points
The physics of non-zero temperature dynamics and transport near
quantum-critical points is discussed by a detailed study of the O(N)-symmetric,
relativistic, quantum field theory of a N-component scalar field in spatial
dimensions. A great deal of insight is gained from a simple, exact solution of
the long-time dynamics for the N=1 d=1 case: this model describes the critical
point of the Ising chain in a transverse field, and the dynamics in all the
distinct, limiting, physical regions of its finite temperature phase diagram is
obtained. The N=3, d=1 model describes insulating, gapped, spin chain
compounds: the exact, low temperature value of the spin diffusivity is
computed, and compared with NMR experiments. The N=3, d=2,3 models describe
Heisenberg antiferromagnets with collinear N\'{e}el correlations, and
experimental realizations of quantum-critical behavior in these systems are
discussed. Finally, the N=2, d=2 model describes the superfluid-insulator
transition in lattice boson systems: the frequency and temperature dependence
of the the conductivity at the quantum-critical coupling is described and
implications for experiments in two-dimensional thin films and inversion layers
are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical
properties of unconventional magnetic systems", Geilo, Norway, April 2-12,
1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be
published. 46 page
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Berezinskii-Kosterlitz-Thouless Crossover in a Trapped Atomic Gas
Any state of matter is classified according to its order, and the kind of
order a physical system can posses is profoundly affected by its
dimensionality. Conventional long-range order, like in a ferromagnet or a
crystal, is common in three-dimensional (3D) systems at low temperature.
However, in two-dimensional (2D) systems with a continuous symmetry, true
long-range order is destroyed by thermal fluctuations at any finite
temperature. Consequently, in contrast to the 3D case, a uniform 2D fluid of
identical bosons cannot undergo Bose-Einstein condensation. Nevertheless, it
can form a "quasi-condensate" and become superfluid below a finite critical
temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this
phase transition with the emergence of a topological order, resulting from the
pairing of vortices with opposite circulations. Above the critical temperature,
proliferation of unbound vortices is expected. Here we report the observation
of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms.
Using a matter wave heterodyning technique, we observe both the long-wavelength
fluctuations of the quasi-condensate phase and the free vortices. At low
temperatures, the gas is quasi-coherent on the length scale set by the system
size. As the temperature is increased, the loss of long-range coherence
coincides with the onset of proliferation of free vortices. Our results provide
direct experimental evidence for the microscopic mechanism underlying the BKT
theory, and raise new questions regarding coherence and superfluidity in
mesoscopic systems.Comment: accepted for publication in Natur
- …
