The physics of non-zero temperature dynamics and transport near
quantum-critical points is discussed by a detailed study of the O(N)-symmetric,
relativistic, quantum field theory of a N-component scalar field in d spatial
dimensions. A great deal of insight is gained from a simple, exact solution of
the long-time dynamics for the N=1 d=1 case: this model describes the critical
point of the Ising chain in a transverse field, and the dynamics in all the
distinct, limiting, physical regions of its finite temperature phase diagram is
obtained. The N=3, d=1 model describes insulating, gapped, spin chain
compounds: the exact, low temperature value of the spin diffusivity is
computed, and compared with NMR experiments. The N=3, d=2,3 models describe
Heisenberg antiferromagnets with collinear N\'{e}el correlations, and
experimental realizations of quantum-critical behavior in these systems are
discussed. Finally, the N=2, d=2 model describes the superfluid-insulator
transition in lattice boson systems: the frequency and temperature dependence
of the the conductivity at the quantum-critical coupling is described and
implications for experiments in two-dimensional thin films and inversion layers
are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical
properties of unconventional magnetic systems", Geilo, Norway, April 2-12,
1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be
published. 46 page