111 research outputs found

    Breast cancer genome heterogeneity: a challenge to personalised medicine?

    Get PDF
    Implementation of high-throughput genomics sequencing approaches into routine laboratory practice has raised the potential for the identification of multiple breast cancer targets suitable for future therapeutic intervention in order to improve cancer outcomes. Results from these studies have revealed bewildering breast cancer genome complexity with very few aberrations occurring in common between breast cancers. In addition, such complexity is compounded by evidence of genomic heterogeneity occurring within individual breast cancers. Such inter-tumoural and intratumoural heterogeneity is likely to present a challenge to personalised therapeutic approaches that might be circumvented through the definition of genome instability mechanisms governing such diversity and their exploitation using synthetic lethal approaches

    Long term productivity and collaboration in information science

    Get PDF
    This is an accepted manuscript of an article published by Springer in Scientometrics on 02/07/2016, available online: https://doi.org/10.1007/s11192-016-2061-8 The accepted version of the publication may differ from the final published version.Funding bodies have tended to encourage collaborative research because it is generally more highly cited than sole author research. But higher mean citation for collaborative articles does not imply collaborative researchers are in general more research productive. This article assesses the extent to which research productivity varies with the number of collaborative partners for long term researchers within three Web of Science subject areas: Information Science & Library Science, Communication and Medical Informatics. When using the whole number counting system, researchers who worked in groups of 2 or 3 were generally the most productive, in terms of producing the most papers and citations. However, when using fractional counting, researchers who worked in groups of 1 or 2 were generally the most productive. The findings need to be interpreted cautiously, however, because authors that produce few academic articles within a field may publish in other fields or leave academia and contribute to society in other ways

    Whole genome sequence analysis suggests intratumoral heterogeneity in dissemination of breast cancer to lymph nodes.

    Get PDF
    BACKGROUND: Intratumoral heterogeneity may help drive resistance to targeted therapies in cancer. In breast cancer, the presence of nodal metastases is a key indicator of poorer overall survival. The aim of this study was to identify somatic genetic alterations in early dissemination of breast cancer by whole genome next generation sequencing (NGS) of a primary breast tumor, a matched locally-involved axillary lymph node and healthy normal DNA from blood. METHODS: Whole genome NGS was performed on 12 µg (range 11.1-13.3 µg) of DNA isolated from fresh-frozen primary breast tumor, axillary lymph node and peripheral blood following the DNA nanoball sequencing protocol. Single nucleotide variants, insertions, deletions, and substitutions were identified through a bioinformatic pipeline and compared to CIN25, a key set of genes associated with tumor metastasis. RESULTS: Whole genome sequencing revealed overlapping variants between the tumor and node, but also variants that were unique to each. Novel mutations unique to the node included those found in two CIN25 targets, TGIF2 and CCNB2, which are related to transcription cyclin activity and chromosomal stability, respectively, and a unique frameshift in PDS5B, which is required for accurate sister chromatid segregation during cell division. We also identified dominant clonal variants that progressed from tumor to node, including SNVs in TP53 and ARAP3, which mediates rearrangements to the cytoskeleton and cell shape, and an insertion in TOP2A, the expression of which is significantly associated with tumor proliferation and can segregate breast cancers by outcome. CONCLUSION: This case study provides preliminary evidence that primary tumor and early nodal metastasis have largely overlapping somatic genetic alterations. There were very few mutations unique to the involved node. However, significant conclusions regarding early dissemination needs analysis of a larger number of patient samples

    Aquarium Nitrification Revisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in Freshwater Aquarium Biofilters

    Get PDF
    Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology

    Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma

    Get PDF
    The current model for breast cancer progression proposes independent “low‐grade (LG) like” and “high‐grade (HG) like” pathways but lacks a known precursor to HG cancer. We applied low coverage whole genome sequencing to atypical ductal hyperplasia (ADH) with and without carcinoma to shed light on breast cancer progression. 14/20 isolated ADH cases harboured at least one copy number alteration (CNA), but had fewer aberrations than LG or HG ductal carcinoma in situ (DCIS). ADH carried more HG‐like CNA than LG DCIS (eg. 8q gain). Correspondingly, 64% (7/11) of ADH cases with synchronous HG carcinoma were clonally related, similar to LG carcinoma (67%, 6/9). This study represents a significant shift in our understanding of breast cancer progression, with ADH as a common precursor lesion to the independent “low‐grade like” and “high‐grade like” pathways. These data suggest that ADH can be a precursor of HG breast cancer and that LG and HG carcinomas can evolve from a similar ancestor lesion. We propose that although LG DCIS may be committed to a LG molecular pathway, ADH may remain multipotent, progressing to either LG or HG carcinoma. This multipotent nature suggests that some ADH could be more clinically significant than LG DCIS, requiring biomarkers for personalising management

    What should an ideal spinal injury classification system consist of? A methodological review and conceptual proposal for future classifications

    Get PDF
    Since Böhler published the first categorization of spinal injuries based on plain radiographic examinations in 1929, numerous classifications have been proposed. Despite all these efforts, however, only a few have been tested for reliability and validity. This methodological, conceptual review summarizes that a spinal injury classification system should be clinically relevant, reliable and accurate. The clinical relevance of a classification is directly related to its content validity. The ideal content of a spinal injury classification should only include injury characteristics of the vertebral column, is primarily based on the increasingly routinely performed CT imaging, and is clearly distinctive from severity scales and treatment algorithms. Clearly defined observation and conversion criteria are crucial determinants of classification systems’ reliability and accuracy. Ideally, two principle spinal injury characteristics should be easy to discern on diagnostic images: the specific location and morphology of the injured spinal structure. Given the current evidence and diagnostic imaging technology, descriptions of the mechanisms of injury and ligamentous injury should not be included in a spinal injury classification. The presence of concomitant neurologic deficits can be integrated in a spinal injury severity scale, which in turn can be considered in a spinal injury treatment algorithm. Ideally, a validation pathway of a spinal injury classification system should be completed prior to its clinical and scientific implementation. This review provides a methodological concept which might be considered prior to the synthesis of new or modified spinal injury classifications

    Recreational and occupational field exposure to freshwater cyanobacteria – a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment

    Get PDF
    Cyanobacteria are common inhabitants of freshwater lakes and reservoirs throughout the world. Under favourable conditions, certain cyanobacteria can dominate the phytoplankton within a waterbody and form nuisance blooms. Case reports and anecdotal references dating from 1949 describe a range of illnesses associated with recreational exposure to cyanobacteria: hay fever-like symptoms, pruritic skin rashes and gastro-intestinal symptoms are most frequently reported. Some papers give convincing descriptions of allergic reactions while others describe more serious acute illnesses, with symptoms such as severe headache, pneumonia, fever, myalgia, vertigo and blistering in the mouth. A coroner in the United States found that a teenage boy died as a result of accidentally ingesting a neurotoxic cyanotoxin from a golf course pond. This death is the first recorded human fatality attributed to recreational exposure to cyanobacteria, although uncertainties surround the forensic identification of the suspected cyanotoxin in this case. We systematically reviewed the literature on recreational exposure to freshwater cyanobacteria. Epidemiological data are limited, with six studies conducted since 1990. Statistically significant increases in symptoms were reported in individuals exposed to cyanobacteria compared to unexposed counterparts in two Australian cohort studies, though minor morbidity appeared to be the main finding. The four other small studies (three from the UK, one Australian) did not report any significant association. However, the potential for serious injury or death remains, as freshwater cyanobacteria under bloom conditions are capable of producing potent toxins that cause specific and severe dysfunction to hepatic or central nervous systems. The exposure route for these toxins is oral, from ingestion of recreational water, and possibly by inhalation. A range of freshwater microbial agents may cause acute conditions that present with features that resemble illnesses attributed to contact with cyanobacteria and, conversely, acute illness resulting from exposure to cyanobacteria or cyanotoxins in recreational waters could be misdiagnosed. Accurately assessing exposure to cyanobacteria in recreational waters is difficult and unreliable at present, as specific biomarkers are unavailable. However, diagnosis of cyanobacteria-related illness should be considered for individuals presenting with acute illness following freshwater contact if a description is given of a waterbody visibly affected by planktonic mass development

    Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

    Get PDF
    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments
    corecore