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Abstract

Background: Intratumoral heterogeneity may help drive resistance to targeted

therapies in cancer. In breast cancer, the presence of nodal metastases is a key

indicator of poorer overall survival. The aim of this study was to identify somatic

genetic alterations in early dissemination of breast cancer by whole genome next

generation sequencing (NGS) of a primary breast tumor, a matched locally-involved

axillary lymph node and healthy normal DNA from blood.

Methods: Whole genome NGS was performed on 12 mg (range 11.1–13.3 mg) of

DNA isolated from fresh-frozen primary breast tumor, axillary lymph node and

peripheral blood following the DNA nanoball sequencing protocol. Single nucleotide

variants, insertions, deletions, and substitutions were identified through a

bioinformatic pipeline and compared to CIN25, a key set of genes associated with

tumor metastasis.

Results: Whole genome sequencing revealed overlapping variants between the

tumor and node, but also variants that were unique to each. Novel mutations unique

to the node included those found in two CIN25 targets, TGIF2 and CCNB2, which

are related to transcription cyclin activity and chromosomal stability, respectively,

and a unique frameshift in PDS5B, which is required for accurate sister chromatid

segregation during cell division. We also identified dominant clonal variants that

progressed from tumor to node, including SNVs in TP53 and ARAP3, which

mediates rearrangements to the cytoskeleton and cell shape, and an insertion in
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TOP2A, the expression of which is significantly associated with tumor proliferation

and can segregate breast cancers by outcome.

Conclusion: This case study provides preliminary evidence that primary tumor and

early nodal metastasis have largely overlapping somatic genetic alterations. There

were very few mutations unique to the involved node. However, significant

conclusions regarding early dissemination needs analysis of a larger number of

patient samples.

Introduction

The presence of tumor spread to local lymph nodes is one of the most important

prognostic factors affecting patient survival in breast cancer [1–4]. Many

treatment strategies are largely based on protein expression measurements of

steroid hormone receptors and Her2, which broadly segregates tumors into 5

molecular subtypes [5]. However, genetic profiling of primary tumors suggests

that the landscape is much more complex than this, with the identification of at

least 10 distinct subtypes by the METABRIC consortium [6], which has

implications for both prognosis and treatment [5, 7].

In the era of targeted therapeutics, intratumoral heterogeneity is being

increasingly recognized as an important barrier to the success of cancer

treatments. Multiregion sequencing of samples taken from the same renal cell

carcinoma and distant metastases revealed that more than 60% of all somatic

mutations were not detectable across every tumor biopsy that was taken,

suggesting that we have previously underestimated the clinical impact of genetic

complexity in individuals as a result of heterogeneity [8]. Indeed, the intratumoral

heterogeneity seen in renal carcinoma led to phenotypic diversity in the form of

activating mutations in MTOR, which may predict for intrinsic resistance to drugs

targeting the PI3K-MTOR pathway. On the other hand, intertumoral hetero-

geneity has been equally well described previously for primary breast cancer [9],

and even in the phenotypically diverse but rare metaplastic breast cancer subtype

[10].

The origin of tumor heterogeneity is frequently debated and it is believed that it

could arise as a consequence of clonal evolution [11, 12]. Meanwhile,

chromosomal instability (CIN) is a hallmark of human cancer that is

characterized by elevated rates of chromosome miss-segregation [13, 14] and is

thought to be due to specific gene alterations that arise before malignant

transformation occurs. Chromosomal instability can give rise to a heterogeneously

aneuploid tumor that could enable selective adaptation and evolution; moreover,

CIN is a process that is required for metastasis and resistance to therapy to occur

[15, 16]. Identifying genetic drivers of CIN is thus central to further under-

standing this type of genomic instability. and —in this way— understanding the

origin of tumor heterogeneity.
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In this study, we sought to define genetic variability early in the metastatic

process through the comparison of a primary breast tumor with paired locally-

involved axillary lymph node in DNA isolated from the same patient by whole

genome sequencing.

Materials and Methods

Tissue samples were provided by the Imperial College Healthcare NHS Trust

Tissue Bank. Other investigators may have received samples from these same

tissues. We performed whole genome sequencing of DNA from a homogenized

primary breast tumor, locally-involved axillary lymph node, and normal tissue

(whole blood) from a patient who had no clinical evidence of visceral metastases.

Following patient consent, a fresh tumor and lymph node sample were each snap-

frozen from the resected specimen. The specimen was obtained at the time of

mastectomy and axillary node clearance for a 10 cm, grade 2, invasive ductal

carcinoma - all (22/22) lymph nodes were involved. Staging investigations did not

reveal any evidence of distant metastases. The project was approved by the

Imperial College Healthcare NHS Trust tissue bank in accordance with the

Human Tissue Act (HTA) guidelines. Tumor and node were microdissected to

ensure 90% quality of neoplastic cells and verified by an experienced

histopathologist. There had been no previous anticancer treatment.

DNA was extracted using the Gentra Puregene Cell Kit (QIAGEN). Whole

genome sequencing of samples was carried out by Complete Genomics Inc..

Sequencing involved the use of a four adaptor library protocol, as detailed in

Drmanac [17]. Briefly, sequencing substrates were generated by means of genomic

DNA fragmentation and recursive cutting with type IIs restriction enzymes and

directional adaptor insertion. The resulting circles were then replicated with w29

polymerase and rolling circle replication (RCR) [18] by synchronized synthesis to

obtain hundreds of tandem copies of the sequencing substrate, referred to as DNA

‘nanoballs’ (DNBs), which were adsorbed to silicon substrates with grid-patterned

arrays to produce DNA nanoarrays. High accuracy cPAL sequencing chemistry

was then used on automated sequencing machines to independently read up to 10

bases left and right of each of the four adaptor insertion sites (i.e., a total of 8

oligonucleotide anchor insertion sites), resulting in a total of 31- to 35-base mate-

paired reads (62 to 70 bases per DNB).

DNA nanoball intensity information proceeded with the following steps: 1,

background correction; 2, image registration; and 3, intensity extraction, during

which the intensity data from each field was subjected to base calling, which itself

involved four major steps: 1, crosstalk correction; 2, normalization; 3, elucidation

of the base present; and 4, raw base score computation. The resulting mate-paired

reads were aligned to the hg19/NCBI Build 37 reference genome in a two-stage

process: first, left and right mate-pairs were aligned independently using indexing

of the reference genome; second, for every location of a single arm identified in

the first stage, local alignment at approximately the mate-pair distance was
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applied to the other arm. At locations selected for likely differences from

reference, mapped reads were assembled into a best-fit, diploid sequence with a

custom software suite employing both Bayesian and de Bruijn graph techniques as

described previously [19]. This process yielded diploid reference with either

variant or no-calls at each genomic location, and with associated variant quality

scores.

Variants were called using CGA Tools (Complete Genomics Inc.). For the

purposes of this study, ‘variants’ includes single nucleotide variants (SNVs),

insertions, deletions, and substitutions. In addition, we judged variants as ‘known’

if they were already listed in dbSNP v132 [20], whilst we also overlapped each

called variant with COSMIC [21]. Gene enrichment was performed with the

Genetic Association Database (GAD) [22] and the Gene Ontology (GO) [23]. In

all of our analyses, we narrowed our focus to variants called in genes and their

flanking regions and used only those that had passed CGA Tools quality control.

Results and Discussion

The output for each sample exceeded 380,000 gigabase (Gb) (mean 382,072 Gb),

with .97% of the genome of each sample being mapped successfully to the

reference genome. Depth of coverage over all mapped bases at 40x or higher was

.92% and .95% when considering the exome (Table 1). There were more SNVs

called than other variant. The proportion of SNVs, insertions, deletions, and

substitutions was similar between matched tumor and node (means of 84.1%, 7%,

6.9%, and 2%, respectively) (Fig. 1); however, the distribution of variants that

were unique to the node differed, with a higher percentage of insertions (26.6%)

and deletions (25.6%) - there was also a modest increase (6.4%) in substitutions.

This may reflect increased genomic instability, which has been reported previously

in breast cancer [24, 25], or structural CIN (sCIN), a potential hallmark of

metastatic cancer [26]. Variants unique to the node overlapped a total of 347

genes and GO enrichment of these genes revealed three significant terms

(P,0.0001): keratinocyte differentiation (GO:0030216); keratinization

(GO:0031424); and epidermal cell differentiation (GO:0009913). Of these 347

genes, 55 had a variant that resulted in a frameshift in the coding sequence, and

GO enrichment of this sub-group revealed no significant term (using P50.01 as

cut-off). When we focused on those variants likely to produce a functional impact

(i.e., splice acceptor/donor variants, missense, and also insertions, deletions, or

substitutions in coding regions) a total of 4,763 genes contained a variant or

variants of likely functional impact in the tumor and 4,739 in the node. The top

GAD term associated with these was breast cancer (P,0.001 for tumor and node),

whilst the top-associated GO biological process was cell surface receptor linked

signal transduction (P,0.0001 for both tumor and node). Considering genes

whose variants were unique to the node, the top GO biological process term was

regulation of transcription (DNA-dependent) (P,0.01), which suggests that

transcriptional changes promote metastasis. We observed many variants located
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upstream of the transcription start-site (TSS), within the promoter region. A

variant in this region could potentially alter transcription of the gene downstream

of the variant.

Table 1. Total output (Gb) and depth of coverage for each sample.

Depth of coverage

Whole genome (%) Exome (%)

Sample Output (Gb)
Successfully
mapped (%) $5x $10x $20x $30x $40x $5x $10x $20x $30x $40x

Normal
blood

392,946 97.7 99.5 99.1 98.0 96.2 93.6 99.9 99.7 99.3 98.6 97.3

Primary
tumor

384,178 97.4 99.5 99.1 97.6 95.4 92.2 99.8 99.7 99.1 97.9 96.1

Axillary
lymph-node

381,091 97.4 99.5 99.0 97.5 95.3 92.2 99.8 99.6 99.0 97.8 95.9

The amount that was successfully mapped to the reference genome for each sample was .97%, with a mean of 92.7% of each base achieving $40x
coverage (or 96.4% for the exome fraction).

doi:10.1371/journal.pone.0115346.t001

Fig. 1. Changing proportion of SNVs, insertions, deletions, and substitutions across samples. Variants
that passed QC and that were called at any read-depth in genes and gene-coding regions were selected. The
proportions of these variant types changed when looking at those unique to the node, with much higher
proportions of insertions, deletions, and substitutions being found. A, Tumor; B, Node; C, unique to node.

doi:10.1371/journal.pone.0115346.g001
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There were 6 tumor and/or node mutations listed in the COSMIC database that

were not present in the matched normal blood sample: three were unique to the

tumor; the node harbored a single unique mutation; and two mutations were

common to both (Table 2). The unique mutation in the node was an insertion,

leading to a frameshift in the coding sequence of PDS5B, a gene that interacts with

the cohesion complex to maintain accurate sister chromatid segregation during

mitosis and meiosis and suggested previously as a tumor suppressor [27, 28]. Of

note, frameshifts in PDS5B have been reported recently in gastric and colorectal

carcinomas with high microsatellite instability [28]. The two mutations common

to the primary tumor and node were SNVs in ARAP3 and TP53. TP53 is a tumor

suppressor which functions as a transcription factor and also plays a key role in

the cellular response to stress [29]. Germline mutations in TP53 causes Li-

Fraumeni Syndrome [30] and somatic mutations are found in many human

cancers [31]. ARAP3, mediates rearrangements to the cytoskeleton and cell shape;

in a study by Yagi [32], the expression and phosphorylation of ARAP3 was found

to reduce invasiveness of gastric carcinoma to the peritoneum, a function that was

suppressed by mutations within the ARAP3 gene. The mutations unique to the

primary tumor may have been derived from a sub-clone unrelated to the

metastasis. These included SNVs in MUC12 and ZNF99, two largely unresearched

genes, and a single base deletion in FHOD1, a gene found to participate in

cytoskeletal changes during endothelial-mesenchymal transition (EMT) but

whose depletion reduced the ability of EMT cancer cells to progress in vivo [33].

In our study, it is possible that the single base deletion in FHOD1 reduced the

activity of the gene and, in turn, reduced the metastatic potential of the sub-clone

in which the deletion appeared, and might explain why we failed to find this SNV

in the nodal metastasis. The similarities and differences between tumor and

involved node may indicate intratumoral heterogeneity, that the nodal metastasis

was derived from a minor sub-clone of the tumor not represented in the tumor

tissue that was sequenced or may reflect sampling when the tissue was selected for

sequencing.

In order to more accurately detect variants indicative of ‘truncal’ mutations [8],

we raised the read-depth threshold to focus on those variants with a position read-

depth of $100 and looked for low frequency somatic variants that may have

arisen recently in the clonal evolution process. The majority of variants found at a

read-depth of $100 were already known and were excluded from analysis;

however, novel variants were also detected that were unique to either the tumor or

the node (Table 3). The lowest frequency unique variant detected by variant type

(SNV, insertion, deletion, and substitution, respectively) was 0.88%, 3.7%,

10.07%, and 4.57% in the tumor, and 7.41%, 3.01%, 10.07%, 2.78% in the node).

The SNV variant frequency increased from 0.88% to 7.41% from tumor to node,

which could reflect sample differences, with a more heterogeneous mix of clones

in the tumor, which then masks the presence of variants in the sample. The node;

however, may represent a dominant clone that metastasized from the primary

tumor but has only recently branched/evolved.

Whole Genome Analysis Suggests Heterogeneity in Breast Cancer
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We also focused our analysis on variants called in the chromosomal instability

25 (CIN25) genes, shown to be predictive of poor clinical outcome in several

cancers [34]. The majority of variants called in CIN25 genes were common to all

samples (normal blood, tumor, and node), were called at comparable frequencies,

and were already known and thus regarded as polymorphisms. We filtered out all

variants called in the normal blood sample and thereafter found a single variant

that was common to both tumor and node, as well as others that were unique to

either the tumor or node (S1 Table). The majority of these variants were located

upstream of the TSS in the region of RNA polymerase binding [35], which could

result in altered expression of the target gene [36–38]. The single variant common

to the tumor and node was an insertion upstream of the TSS of TOP2A at high

Table 2. COSMIC mutations called in the primary tumor and axillary lymph node.

Chromosome Start bp End bp Type Reference Variant COSMIC ID Symbol Tumor? Node?

5 141033869 141033870 SNV T G COSM32578 ARAP3 Yes Yes

7 100612086 100612087 SNV A G COSM147730 MUC12 Yes No

13 33344887 33344887 Insertion - A COSM85618 PDS5B No Yes

16 67267851 67267852 Deletion G - COSM50200 FHOD1 Yes No

17 7577093 7577094 SNV G A COSM10704 TP53 Yes Yes

19 22954575 22954576 SNV A G COSM140394 ZNF99 Yes No

Mutations were not present in the normal blood sample. Three mutations were unique to the tumor whilst the node harbored a single unique mutation: a
frameshift in the coding sequence of PDS5B, a gene that interacts with the cohesion complex to maintain accurate sister chromatid segregation during
mitosis and meiosis and suggested previously as a tumor suppressor [27, 28].

doi:10.1371/journal.pone.0115346.t002

Table 3. Known and novel variant counts at a read-depth of $100 that overlapped genes and their flanking regions.

Primary tumor Axillary lymph-node Unique to primary tumor
Unique to axillary lymph-
node

SNVs Total calls 57829 55203 1446 1400

dbSNP 55823 53349 943 954

Not in dbSNP 2006 1854 503 446

Insertions Total calls 2721 2652 196 187

dbSNP 2342 2296 73 71

Not in dbSNP 379 356 123 116

Deletions Total calls 2478 2431 93 98

dbSNP 1972 1933 34 38

Not in dbSNP 506 498 59 60

Substitutions Total calls 1478 1503 239 222

dbSNP 956 987 60 71

Not in dbSNP 522 516 179 151

Variants were judged as known by their being listed in dbSNP. Variant counts for those unique to both samples are also shown. The lowest frequency variant
detected for each variant type (SNV, insertion, deletion, and substitution, respectively) in each sample was 0.88%, 3.7%, 10.07%, and 4.57% in the tumor,
and 7.41%, 3.01%, 10.07%, 2.78% in the node.

doi:10.1371/journal.pone.0115346.t003
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frequency (86.1%, tumor; 82.4%, node), suggesting homozygosity in both or

perhaps amplification of this locus. TOP2A is one of four genes, including

AURKA, FOXM1, and TPX2, whose expression is significantly associated with

tumor proliferation and can segregate breast cancers by outcome [39].

CIN25 variants unique to the node included a single base insertion (23.4%

frequency) in the 39 untranslated region (39UTR) of TGIF2, and also a

predominant three-base insertion (92.9% frequency) upstream of the TSS of the

same gene. Given the variable frequencies of the two TGIF2 variants, it suggests

that at least two distinct clones predominate in the node, as suggested by

Gerlinger [8]. TGIF2 is a DNA-binding homeobox and is a transcriptional

repressor [40] that is highly expressed in ovarian cancer [41] and has been

suggested as having an indirect role in metastasis through micro RNA methylation

[42]. The only other variant unique to the node was an insertion upstream of the

TSS of CCNB2 (92.3% frequency), increased expression of which has been

suggested to result in CIN in cancer [43].

Conclusions

In conclusion, whole genome deep sequencing of a matched primary tumor and

lymph node metastasis revealed largely overlapping alterations and that there were

very few mutations unique to the involved node. Variants common to tumor and

node include SNVs in TP53 and ARAP3, which mediate rearrangements to the

cytoskeleton and cell shape, and an insertion in TOP2A, whose expression is

significantly associated with tumor proliferation and can segregate breast cancers

by outcome. However, significant conclusions regarding early dissemination

needs analysis of a larger cohort of samples.

Sequence Data

All sequence data is available at the European Bioinformatics Institute (EBI)

under accession number PRJEB7607 (ERP008528).

Supporting Information

S1 Table. Variants in CIN25 genes: overlap between tumor and node. Many

variants were found in the region upstream of the TSS and could therefore alter

the respective gene expression of each. Variants are described using the following

syntax: variant type, base change, genomic position, gene region, functional

impact, frequency.

doi:10.1371/journal.pone.0115346.s001 (DOC)
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