2,021 research outputs found

    Genomic signatures of population decline in the malaria mosquito Anopheles gambiae

    Get PDF
    Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions

    Smoking and health-related quality of life in English general population: Implications for economic evaluations

    Get PDF
    Copyright @ 2012 Vogl et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Little is known as to how health-related quality of life (HRQoL) when measured by generic instruments such as EQ-5D differ across smokers, ex-smokers and never-smokers in the general population; whether the overall pattern of this difference remain consistent in each domain of HRQoL; and what implications this variation, if any, would have for economic evaluations of tobacco control interventions. Methods: Using the 2006 round of Health Survey for England data (n = 13,241), this paper aims to examine the impact of smoking status on health-related quality of life in English population. Depending upon the nature of the EQ-5D data (i.e. tariff or domains), linear or logistic regression models were fitted to control for biology, clinical conditions, socio-economic background and lifestyle factors that an individual may have regardless of their smoking status. Age- and gender-specific predicted values according to smoking status are offered as the potential 'utility' values to be used in future economic evaluation models. Results: The observed difference of 0.1100 in EQ-5D scores between never-smokers (0.8839) and heavy-smokers (0.7739) reduced to 0.0516 after adjusting for biological, clinical, lifestyle and socioeconomic conditions. Heavy-smokers, when compared with never-smokers, were significantly more likely to report some/severe problems in all five domains - mobility (67%), self-care (70%), usual activity (42%), pain/discomfort (46%) and anxiety/depression (86%) -. 'Utility' values by age and gender for each category of smoking are provided to be used in the future economic evaluations. Conclusion: Smoking is significantly and negatively associated with health-related quality of life in English general population and the magnitude of this association is determined by the number of cigarettes smoked. The varying degree of this association, captured through instruments such as EQ-5D, may need to be fed into the design of future economic evaluations where the intervention being evaluated affects (e.g. tobacco control) or is affected (e.g. treatment for lung cancer) by individual's (or patients') smoking status

    Examining the impact of 11 long-standing health conditions on health-related quality of life using the EQ-5D in a general population sample

    Get PDF
    Objectives Health-related quality of life (HRQoL) measures have been increasingly used in economic evaluations for policy guidance. We investigate the impact of 11 self-reported long-standing health conditions on HRQoL using the EQ-5D in a UK sample. Methods We used data from 13,955 patients in the South Yorkshire Cohort study collected between 2010 and 2012 containing the EQ-5D, a preference-based measure. Ordinary least squares (OLS), Tobit and two-part regression analyses were undertaken to estimate the impact of 11 long-standing health conditions on HRQoL at the individual level. Results The results varied significantly with the regression models employed. In the OLS and Tobit models, pain had the largest negative impact on HRQoL, followed by depression, osteoarthritis and anxiety/nerves, after controlling for all other conditions and sociodemographic characteristics. The magnitude of coefficients was higher in the Tobit model than in the OLS model. In the two-part model, these four long-standing health conditions were statistically significant, but the magnitude of coefficients decreased significantly compared to that in the OLS and Tobit models and was ranked from pain followed by depression, anxiety/nerves and osteoarthritis. Conclusions Pain, depression, osteoarthritis and anxiety/nerves are associated with the greatest losses of HRQoL in the UK population. The estimates presented in this article should be used to inform economic evaluations when assessing health care interventions, though improvements can be made in terms of diagnostic information and obtaining longitudinal data

    Weekends affect mortality risk and chance of discharge in critically ill patients: a retrospective study in the Austrian registry for intensive care.

    Get PDF
    BACKGROUND: In this study, we primarily investigated whether ICU admission or ICU stay at weekends (Saturday and Sunday) is associated with a different risk of ICU mortality or chance of ICU discharge than ICU admission or ICU stay on weekdays (Monday to Friday). Secondarily, we analysed whether weekend ICU admission or ICU stay influences risk of hospital mortality or chance of hospital discharge. METHODS: A retrospective study was performed for all adult patients admitted to 119 ICUs participating in the benchmarking project of the Austrian Centre for Documentation and Quality Assurance in Intensive Care (ASDI) between 2012 and 2015. Readmissions to the ICU during the same hospital stay were excluded. RESULTS: In a multivariable competing risk analysis, a strong weekend effect was observed. Patients admitted to ICUs on Saturday or Sunday had a higher mortality risk after adjustment for severity of illness by Simplified Acute Physiology Score (SAPS) 3, year, month of the year, type of admission, ICU, and weekday of death or discharge. Hazard ratios (95% confidence interval) for death in the ICU following admission on a Saturday or Sunday compared with Wednesday were 1.15 (1.08-1.23) and 1.11 (1.03-1.18), respectively. Lower hazard ratios were observed for dying on a Saturday (0.93 (0.87-1.00)) or Sunday (0.85 (0.80-0.91)) compared with Wednesday. This is probably related to the reduced chance of being discharged from the ICU at the weekend (0.63 (0.62-064) for Saturday and 0.56 (0.55-0.57) for Sunday). Similar results were found for hospital mortality and hospital discharge following ICU admission. CONCLUSIONS: Patients admitted to ICUs at weekends are at increased risk of death in both the ICU and the hospital even after rigorous adjustment for severity of illness. Conversely, death in the ICU and discharge from the ICU are significantly less likely at weekends

    Survival in Southern European patients waitlisted for kidney transplant after graft failure: A competing risk analysis

    Full text link
    Background Whether patients waitlisted for a second transplant after failure of a previous kidney graft have higher mortality than transplant-näive waitlisted patients is uncertain. Methods We assessed the relationship between a failed transplant and mortality in 3851 adult KT candidates, listed between 1984–2012, using a competing risk analysis in the total population and in a propensity score-matched cohort. Mortality was also modeled by inverse probability weighting (IPTW) competing risk regression. Results At waitlist entry 225 (5.8%) patients had experienced transplant failure. All-cause mortality was higher in the post-graft failure group (16% vs. 11%; P = 0.033). Most deaths occurred within three years after listing. Cardiovascular disease was the leading cause of death (25.3%), followed by infections (19.3%). Multivariate competing risk regression showed that prior transplant failure was associated with a 1.5-fold increased risk of mortality (95% confidence interval [CI], 1.01–2.2). After propensity score matching (1:5), the competing risk regression model revealed a subhazard ratio (SHR) of 1.6 (95% CI, 1.01–2.5). A similar mortality risk was observed after the IPTW analysis (SHR, 1.7; 95% CI, 1.1–2.6). Conclusions Previous transplant failure is associated with increased mortality among KT candidates after relisting. This information is important in daily clinical practice when assessing relisted patients for a retransplant.This study was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) (grant ICI14/00016) from the Instituto de Salud Carlos III co-funded by the Fondo Europeo de Desarrollo Regional±FEDER, RETICS (REDINREN RD16/0009/0006, RD16/0009/0031

    Higher occurrence of nausea and vomiting after total hip arthroplasty using general versus spinal anesthesia: an observational study.

    Get PDF
    BACKGROUND: Under the assumption that postoperative nausea and vomiting (PONV) may occur after total hip arthroplasty (THA) regardless of the anesthetic technique used, it is not clear whether general (GA) or spinal (SA) anesthesia has higher causal effect on this occurrence. Conflicting results have been reported. METHODS: In this observational study, we selected all elective THA interventions performed in adults between 1999 and 2008 in a Swiss orthopedic clinic under general or spinal anesthesia. To assess the effect of anesthesia type on the occurrence of PONV, we used the propensity score and matching methods, which allowed us to emulate the design and results of an RCT. RESULTS: Among 3922 procedures, 1984 (51 %) patients underwent GA, of which 4.1 % experienced PONV, and 1938 underwent SA, of which 3.5 % experienced PONV. We found that the average treatment effect on the treated, i.e. the effect of anesthesia type for a sample of individuals that actually received spinal anesthesia compared to individuals who received GA, was ATET = 2.00 % [95 % CI, 0.78-3.19 %], which translated into an OR = 1.97 [95 % CI 1.35; 2.87]. CONCLUSION: This suggests that the type of anesthesia is not neutral regarding PONV, general anesthesia being more strongly associated with PONV than spinal anesthesia in orthopedic surgery

    Effect of Variable Selection Strategy on the Performance of Prognostic Models When Using Multiple Imputation

    Get PDF
    BACKGROUND: Variable selection is an important issue when developing prognostic models. Missing data occur frequently in clinical research. Multiple imputation is increasingly used to address the presence of missing data in clinical research. The effect of different variable selection strategies with multiply imputed data on the external performance of derived prognostic models has not been well examined. METHODS AND RESULTS: We used backward variable selection with 9 different ways to handle multiply imputed data in a derivation sample to develop logistic regression models for predicting death within 1 year of hospitalization with an acute myocardial infarction. We assessed the prognostic accuracy of each derived model in a temporally distinct validation sample. The derivation and validation samples consisted of 11524 patients hospitalized between 1999 and 2001 and 7889 patients hospitalized between 2004 and 2005, respectively. We considered 41 candidate predictor variables. Missing data occurred frequently, with only 13% of patients in the derivation sample and 31% of patients in the validation sample having complete data. Regardless of the significance level for variable selection, the prognostic model developed using only the complete cases in the derivation sample had substantially worse performance in the validation sample than did the models for which variables were selected using the multiply imputed versions of the derivation sample. The other 8 approaches to handling multiply imputed data resulted in prognostic models with performance similar to one another. CONCLUSIONS: Ignoring missing data and using only subjects with complete data can result in the derivation of prognostic models with poor performance. Multiple imputation should be used to account for missing data when developing prognostic models

    Physical activity and health related quality of life

    Get PDF
    Copyright @ 2012 Anokye et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.BACKGROUND: Research on the relationship between Health Related Quality of Life (HRQoL) and physical activity (PA), to date, have rarely investigated how this relationship differ across objective and subjective measures of PA. The aim of this paper is to explore the relationship between HRQoL and PA, and examine how this relationship differs across objective and subjective measures of PA, within the context of a large representative national survey from England. METHODS: Using a sample of 5,537 adults (40–60 years) from a representative national survey in England (Health Survey for England 2008), Tobit regressions with upper censoring was employed to model the association between HRQoL and objective, and subjective measures of PA controlling for potential confounders. We tested the robustness of this relationship across specific types of PA. HRQoL was assessed using the summary measure of health state utility value derived from the EuroQol-5 Dimensions (EQ-5D) whilst PA was assessed via subjective measure (questionnaire) and objective measure (accelerometer- actigraph model GT1M). The actigraph was worn (at the waist) for 7 days (during waking hours) by a randomly selected sub-sample of the HSE 2008 respondents (4,507 adults – 16 plus years), with a valid day constituting 10 hours. Analysis was conducted in 2010. RESULTS: Findings suggest that higher levels of PA are associated with better HRQoL (regression coefficient: 0.026 to 0.072). This relationship is consistent across different measures and types of PA although differences in the magnitude of HRQoL benefit associated with objective and subjective (regression coefficient: 0.047) measures of PA are noticeable, with the former measure being associated with a relatively better HRQoL (regression coefficient: 0.072). CONCLUSION: Higher levels of PA are associated with better HRQoL. Using an objective measure of PA compared with subjective shows a relatively better HRQoL.This project was funded by the NIHR Health Technology Assessment programme (project number 08/72/01)

    Galileons as Wess-Zumino Terms

    Full text link
    We show that the galileons can be thought of as Wess-Zumino terms for the spontaneous breaking of space-time symmetries. Wess-Zumino terms are terms which are not captured by the coset construction for phenomenological Lagrangians with broken symmetries. Rather they are, in d space-time dimensions, d-form potentials for (d+1)-forms which are non-trivial co-cycles in Lie algebra cohomology of the full symmetry group relative to the unbroken symmetry group. We introduce the galileon algebras and construct the non-trivial (d+1)-form co-cycles, showing that the presence of galileons and multi-galileons in all dimensions is counted by the dimensions of particular Lie algebra cohomology groups. We also discuss the DBI and conformal galileons from this point of view, showing that they are not Wess-Zumino terms, with one exception in each case.Comment: 49 pages. v2 minor changes, version appearing in JHE

    ResearchGate versus Google Scholar: Which finds more early citations?

    Get PDF
    ResearchGate has launched its own citation index by extracting citations from documents uploaded to the site and reporting citation counts on article profile pages. Since authors may upload preprints to ResearchGate, it may use these to provide early impact evidence for new papers. This article assesses the whether the number of citations found for recent articles is comparable to other citation indexes using 2675 recently-published library and information science articles. The results show that in March 2017, ResearchGate found less citations than did Google Scholar but more than both Web of Science and Scopus. This held true for the dataset overall and for the six largest journals in it. ResearchGate correlated most strongly with Google Scholar citations, suggesting that ResearchGate is not predominantly tapping a fundamentally different source of data than Google Scholar. Nevertheless, preprint sharing in ResearchGate is substantial enough for authors to take seriously
    corecore