127 research outputs found

    Adoption incentives and environmental policy timing under asymmetric information and strategic firm behaviour

    Get PDF
    We consider the incentives of a single firm to invest in a cleaner technology under emission quotas and emission taxation. We assume asymmetric information about the firm's cost of employing the new technology. Policy is set either before the firm invests (commitment) or after (time consistency). Contrary to conventional wisdom, we find that with commitment (time consistency), quotas give higher (lower) investment incentives than taxes. With quotas (taxes), commitment generally leads to higher (lower) welfare than time consistency. Under commitment with quadratic abatement costs and environmental damages, a modified Weitzman rule applies and quotas usually lead to higher welfare than taxes

    Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies

    Get PDF
    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N

    Investment Incentives Under Emission Trading: An Experimental Study

    Get PDF
    This paper presents the results of an experimental investigation on incentives to adopt advanced abatement technology under emissions trading. Our experimental design mimics an industry with small asymmetric polluting firms regulated by different schemes of tradable permits. We consider three allocation/auction policies: auctioning off (costly) permits through an ascending clock auction, grandfathering permits with re-allocation through a single-unit double auction, and grandfathering with re-allocation through an ascending clock auction. Our results confirm both dynamic and static theoretical equivalence of auctioning and grandfathering. We nevertheless find that although the market institution used to reallocate permits does not impact the dynamic efficiency from investment, it affects the static efficiency from permit trading

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    On Environmental Regulation of Oligopolies: Emission versus Performance Standards

    Get PDF
    By specializing Montero’s (J Environ Econ Manag 44:23–44, 2002) model of environmental regulation under Cournot competition to an oligopoly with linear demand and quadratic abatement costs, we extend his comparison of firms incentives to invest in R&D under emission and performance standards by solving for a closed form solution of the underlying two-stage game. This allows for a full comparison of the two instruments in terms of their resulting propensity for R&D and equilibrium industry output. In addition, we incorporate an equilibrium welfare analysis. Finally, we investigate a three-stage game wherein a welfare-maximizing regulator sets a socially optimal emission cap under each policy instrument. For the latter game, while closed-form solutions for the subgame-perfect equilibrium are not possible, we establish numerically that the resulting welfare is always larger under a performance standard

    Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    Get PDF
    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore