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Abstract

This paper presents the results of an experimental investigation on incentives to adopt advanced

abatement technology under emissions trading. Our experimental design mimics an industry with

small asymmetric polluting firms regulated by different schemes of tradable permits. We consider

three allocation/auction policies: auctioning off (costly) permits through an ascending clock auction,

grandfathering permits with re-allocation through a single-unit double auction, and finally grand-

fathering with re-allocation through an ascending clock auction. We find that the treatments

with an initial free allocation of permits (grandfathering) perform closer to the first

best investment pattern than the treatment with pure auctioning. This result is mainly

driven by higher efficiency in permit allocation in the treatments with grandfathering.

JEL Classification: C92; D44; L51; Q28; Q55

Keywords: environmental policy; abatement technology; taxes; permit trading; auc-
tions

∗Department of Economics, University Jaume I of Castellón, 12071 Castellón, Spain. Email:
camacho@eco.uji.es

†Department of Economics, University of Kiel, Olshausenstrasse 40, 24118, and Institute of World
Economics, 24105, Kiel, Germany. Germany. Email: requate@economics.uni-kiel.de

‡Corresponding author. Department of Economics, University of Kiel, Olshausenstrasse 40, 24118
Kiel, Germany. Email: waichman@economics.uni-kiel.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61419586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

It is widely acknowledged today that ‘market-based’ pollution control instruments,

such as emission taxes and tradable permits, are powerful and efficient tools for curb-

ing pollution. At an early stage, Kneese and Schultze (1975) emphasized that one

of the most important criteria for judging different pollution control policies is the

extent to which these policies encourage firms to develop or adopt low-pollution tech-

nologies. Since then a large body of both theoretical and empirical research has been

analyzing the impact of different policy instruments on both technological change and

the diffusion of new technologies. The first attempts to rank environmental policy

instruments were made by Downing and White (1986), Malueg (1989), Milliman and

Prince (1989), and Jung et al. (1996).1 Taking aggregate cost savings as the ranking

criterion for pollution control policies, these studies, however, ignore the individual

firms’ incentives to adopt new technologies. Later, Kennedy and Laplante (2000)

and Requate and Unold (2003, 2001) (for the case of adoption of new technology),

and Montero (2002a,b) and Fischer et al. (2003) (for the case of technology innova-

tion) argue that incentives provided by policy instruments to adopt (or develop) new

technologies in equilibrium have to be considered in evaluating different pollution

control policies. In other words, the number of firms that adopt the new technology

in equilibrium should be determined endogenously. In particular, Requate and Unold

(2003, 2001) study the incentives provided by emission taxes and tradable permits

to adopt a given low-pollution technology. The authors show that if the regulator

is well informed about the new technology2 and firms are asymmetric, both instru-

ments provide efficient incentives to invest in advanced abatement technology if the

regulator levies a tax rate at the Pigouvian level or the equivalent emission cap, re-

1See Requate (2005) for a survey of incentives provided by environmental policy instruments to
adopt and develop advanced abatement technology.

2This assumption comes close to the situation in European countries as a result of the Inte-
grated Pollution Prevention and Control (IPPC) Directive 96/61. The IPPC legislation requires
emission reduction and environmental improvements on the basis of what is achievable with the best
techniques available to individual industrial sectors.
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spectively. If firms are symmetric, however, Requate and Unold (2003) show that

an ex ante setting of emission tax rates will fail to induce the first-best investment

pattern. Although permits may theoretically lead to first-best investment, firms face

a coordination problem that may prevent them from pursuing this course. Moreover,

for both, symmetric and asymmetric firms, the authors establish the equivalence of

grandfathered and auctioned permits with respect to technology adoption.

In this paper we study investment incentives from an experimental perspective. To

this end we have conducted a series of economic experiments to simulate investment

in a low-pollution technology when firms are regulated by emission permit markets.

In particular, we investigate the impact of different allocations of property rights (free

vs. costly allocation of permits) and different auction schemes on the efficiency of

technology adoption.3 In a nutshell, our experimental design is as follows: In a first

step, subjects (firms) decide whether or not to buy a new technology that lowers their

marginal abatement cost schedules, and in a second step, they participate in a permit

auction. The main research issue is whether or not this two-step procedure induces i)

an optimal allocation of investment decisions and ii) an efficient allocation of permits

after the investment phase. Since symmetric firms face a coordination problem with

respect to which firm will invest (Requate and Unold, 2003), we follow the asymmetric

model of Requate and Unold (2001) by allocating different initial technologies to the

firms, whereas the new technology is the same for all firms.

Furthermore, we have to specify the mechanisms for auctioning and re-allocating

permits. In the theoretical literature these mechanisms are usually modeled as a black

box. With the exception of Montero (2002a,b), firms are mostly assumed to behave

as price-takers, and the auction clears the market. In a set-up with grandfathering,

it is natural to choose a double auction for re-allocating the permits among the

firms. Under costly allocation (so-called auctioning) we decided to implement an

3There are other studies investigating the impact of different auction designs or costly vs. free
allocation of permits (for instance, Wr̊ake et al., 2009), but to our knowledge, no other study had
yet investigated this impact on technology adoption.
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ascending clock auction. In addition, we conduct a third treatment where permits

are grandfathered and then re-allocated through a (double) ascending clock auction.

Prior to this two-step procedure, we have the subjects participate in a treatment

where the permit instrument is substituted by an emission tax. In such a case there is

no interaction between the subjects. This treatment was conducted to make subjects

familiar with the investment and abatement decisions depending on their abatement

cost schedule.

Our main results are as follows: First, we find that in all three treatments the

investment patterns are relatively close to the first-best investment pattern. We also

find that the treatments with an initial free allocation of permits (grandfathering)

perform closer to the first best allocation than the treatment with pure auctioning.

Moreover, we find that the individual investment decision is mainly determined by

the initial technology, while the risk attitude of subjects matters only in the treat-

ment where permits are grandfathered and re-allocated through a double auction.4

Secondly, with respect to the efficiency of the permit allocation we also find that free

allocation (grandfathering) outperforms pure auctioning of permits. Furthermore, we

observe that in the permit trading phase of all treatments, prices are higher and (net)

trade volumes are lower than predicted by the theoretical equilibrium. Indeed, in the

treatment with grandfathering and double auction we observe speculative trade, that

is, some subjects buy and sell permits within the same trading round. This is quite

striking since our design does not provide any reason to engage in arbitrage. Finally,

we find that the treatments with grandfathering result in overall lower abatement

costs (i.e. investment and abatement costs) than the treatment where permits are

initially auctioned off. This result is mainly due to the better allocation of permits

in our grandfathering treatments.

Our paper is organized as follows: The next section reviews the related literature.

Section 3 outlines the underlying theoretical model. Section 4 describes the experi-

4For this purpose we asked the subjects to participate in a risk test (Holt and Laury, 2002) at
the end of each treatment.
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mental design and procedure, and section 5 sets out the results. Section 7 concludes.

2 Related Experimental Literature

As mentioned above, our study draws on the models of Requate and Unold (2001,

2003), who establish the dynamic (ax ante and ex post) optimality of tradable emis-

sion permits and the equivalence of auctioned permits and grandfathering.5 Since

Plott’s (1983) first laboratory experiment on emissions trading, numerous experi-

ments have been conducted on permit trading.6 However, only a minority of them

consider investment in low-pollution technology when firms participate in emission

permit markets.

Ben-David et al. (1999) consider an emission permit market where firms produce

a good by using capital and causing emissions. In their setting, firms can use one of

three possible production technologies where permits and capital costs are inversely

related (i.e. the cleanest technology is the most expensive one in terms of capital). In

each round the firms can make an irreversible investment decision to become cleaner

(but not vice versa). Surprisingly, the authors find that heterogeneity leads to lower

efficiency from trade.

Hizen et al. (2001) and Kusakawa and Saijo (2003) also investigate investment

with emissions trading, where trading is either bilateral or takes place using a double

auction. These authors find that the irreversibility of investment and a time-lag in

abatement reduce efficiency. Buckley et al. (2005, 2006) compare between implemen-

tation of cap-and-trade and baseline-and-credit (with and without varying produc-

tion capacity) where emission rate is endogenously determined by the subjects. The

authors find, in line with theory, that baseline-and-credit scheme results in higher

aggregate output and emissions.

Finally, Gangadharan et al. (2010) examine the interaction between permit bank-

5Dynamic optimality refers to long-term abatement incentives including adoption (and also in-
novation through R&D) of new technologies.

6A summary of the literature is given in Muller and Mestelman (1998) and in Bohm (2003).
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ing and (irreversible) investment in a cleaner technology. The authors consider an

industry with asymmetric firms that differ with respect to production capacity and

cleanliness. Permits are allocated for free and can be traded through a double auc-

tion. As in our model, the effect of investment in cleaner technology is asymmetric

(dirty firms gain more by investing). In contrast to our design, information about

investment is made public and given to all participants. The authors find that firms

tend to over-invest and over-bank. Accordingly, the result is sub-optimal market

performance.

3 Theoretical Background

This section presents the theoretical model that served as a basis for our experiment.

The model outlined here is a discrete version of the model with a continuum of firms,

as proposed by Requate and Unold (2001).

Consider an industry consisting of n polluting firms and K different initial tech-

nologies. Each firm i = {1, ..., n} is endowed with one of these initial technologies

and can invest in adopting the advanced technology a, the same for all firms. The

firms’ technologies are represented by their abatement cost functions C i(ei, k) with

k = 1, ..., K, a. For any targeted emission level e we assume C i(e, k) > 0 for e < ēk,

where ēk is the baseline emission level of technology k = 1, ..., K , chosen in the ab-

sence of regulation. We denote this by EMAX. Investment in advanced abatement

technology leads to lower marginal abatement costs, i.e. −C i
e(e, k) > −C i

e(e, a) for all

e ≤ ēk, where −C i
e(e, k) ≡ −∂C i

e(e, k)/∂e is the marginal abatement cost, written for

short as MAC. Denoting k(i) as the technology initially owned by firm i, we assume,

without loss of generality, that the firms’ abatement cost functions are ordered from

the dirtiest to the least dirty, i.e. C i(e, k(i)) ≥ C i+1(e, k(i + 1) and −C i
e(e, k(i)) ≥

−C i+1
e (e, k(i+ 1). Installing the new technology causes a fixed cost F > 0, the same

for all firms. Moreover, when setting the optimal policy, the regulator uses an increas-
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ing and convex social damage function, D(E), that evaluates emissions in monetary

terms. Here E =
�n

i=1 ei denotes aggregate emissions.

A social planner minimizes total social costs with respect to emissions and the num-

ber of firms. When the fixed investment cost is independent of the initial technology,

and if not all firms are supposed to adopt in equilibrium the advanced technology, it

is always optimal for at least those firms with the highest abatement costs to invest,

i.e. there will be some index j such that the firms i = 1, ..., j will invest. Exploiting

the fact that C i(ei, a) = Cj(ej, a) and ei = ej for all i ≤ j , the social planner’s

problem can therefore be written as

min
{j,ea,ej+1,...,en}

{j[Cj(ea, a) + F ] +
n�

i=j+1

C
i(ei, k(i)) +D(E)}

where E = jej+
n�

i=j+1
ei. Clearly for i > j , ei depends solely on the type of technology

k.

Using AMAC∗(E, j) to denote the optimal aggregate marginal abatement cost

when the first j firms have adopted the advanced abatement technology, the reg-

ulator will choose the optimal aggregate emission level E∗, satisfying

D
�(E∗) = AMAC

∗(E∗
, j) (1)

Assuming that a regulating authority uses tradable permits to control emissions, it

will issue a number of permits, L = E∗, to enforce the aggregate emission level E∗.

Using σ to denote the market price for permits, firm i with technology k will choose

an emission level ei(σ, k) such that its marginal abatement cost equals the price of

permits: −C i
e(ei(σ, k), k(i)) = σ.

Now, a firm with original technology i has an incentive to adopt the advanced

technology a if and only if

C
i(ei(σ, a), a) + F + σ[ei(σ, a)− êi)] < C

i(ei(σ, k), k) + σ[ei(σ, k)− êi], (2)
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where êi is firm i’s initial endowment of permits (if any). Condition (2) indicates

that investment will be profitable if the total cost (made up of abatement cost, ex-

penditures on permits, and investment cost) is lower than the abatement cost plus

expenditures for permits without investment. This condition crucially depends on

the permit price and hence on the total supply of permits L chosen by the regula-

tor. Even if firms are identical, it may be the case that in equilibrium some firms

will adopt the new technology and some will not (see Requate and Unold, 2003). In

fact, the price of permits and the number of firms are both determined endogenously.

Requate and Unold show that socially optimal allocation can be theoretically imple-

mented by issuing the ex-ante socially optimal number of emission permits for both

a completely symmetric model (Requate and Unold, 2003) and an asymmetric model

(Requate and Unold, 2001). In our experimental study, we therefore assume that

the regulator issues the optimal number of permits. Requate and Unold (2001, 2003)

also show that the social optimum can be decentralized, irrespective of whether per-

mits are allocated for free (grandfathered) or are auctioned off. The type of auction

or trading procedure under grandfathering are not specified in these papers. They

merely assume that the permit market will always clear.

4 Experimental Design

The experiment was conducted in the experimental laboratory of the University of

Kiel between December 2007 and June 2008 using the z-Tree experimental software

(Fischbacher, 2007). Subjects were volunteer students with at least a Bachelor’s de-

gree in Economics. Earnings during the experiments were designated in Experimental

Currency Units (ECUs) and converted into e at the end of the session. In the fol-

lowing sections we describe the treatments as well as the experimental procedure

implemented.
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4.1 Parameters and treatments

We chose five different technologies T1, ..., T5. Technology T1 (technology T5) im-

plies the highest (lowest) marginal abatement cost (MAC) and the highest (lowest)

business-as-usual emission level (EMAX). The firms’ technologies are represented by

stepwise, downward sloping marginal abatement cost functions depicted in Table 1.

If there is no pollution control and the firms do not make any abatement effort, their

default profit is Π0 = 1200 ECU. The regulator issues a number of permits L = 108

(110) in case of grandfathering (auctioning).7

By investing a fixed amount of F = 580 ECU, any subject (firm) can adopt the

new technology a, which has considerably lower levels of MAC and EMAX than even

the most efficient initial technology.

With these parameters, only the firms with technologies T1 and T2 should invest

in a socially optimal allocation. This is also an equilibrium with an optimal price of

55 ECU. However, other, less efficient equilibria exist.8

We conducted three different treatments implementing the following policy instru-

ments:

• Auctioning-off permits through an ascending clock auction (AAC). We refer to

this mechanism as pure auctioning.

• Grandfathering and re-allocating permits through a single-unit double auction

(GDA)

• Grandfathering and re-allocating permits through an ascending clock auction

(GAC)

7We originally had planned to issue L = 110 permits, which is the optimal emission level with a
hypothetical damage function of D(E) = E2

4 (as illustrated in Figure 1). To avoid integer problems,
we reduced the number of permits to 108 in the case of grandfathering. Since the AMAC curve is
step function, the expected permit price lies between 40 and 50 ECU in both cases, and the small
difference of 2 permits should not affect the results.

8For example, if one firm with technology T3 invests and instead one firm with technology T2

does not invest, no firm has a unilateral incentive to deviate from its investment decision.
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MAC
Emissions (ei) per technology type
T1 T2 T3 T4 T5 a

0 20 18 16 14 12 7
10 19 17 15 13 11 6
20 18 16 14 12 10 5
30 17 15 13 11 9 4
40 16 14 12 10 8 3
50 15 13 11 9 7 2
60 14 12 10 8 6 1
70 13 11 9 7 5 0
80 12 10 8 6 4 0
90 11 9 7 5 3 0
100 10 8 6 4 2 0
110 9 7 5 3 1 0
120 8 6 4 2 0 0
130 7 5 3 1 0 0
140 6 4 2 0 0 0
150 5 3 1 0 0 0
160 4 2 0 0 0 0
170 3 1 0 0 0 0
180 2 0 0 0 0 0
190 1 0 0 0 0 0
200 0 0 0 0 0 0

Table 1: Marginal Abatement Cost (MAC) per technology type. T1, ..., T5 denote the
initial technologies, while a denotes the advanced abatement technology.

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450
Aggregate Emissions

AMAC with the old technologies AMAC if T1 and T2 invests Marginal Damage

Ê*=L*

*=*

Figure 1: Socially optimal instrument level, tax and emission permits.
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Typically, under a system of grandfathering (i.e. free allocation of permits), sub-

jects can bilaterally trade the permits. To mimic this, it is natural to choose a

single-unit double auction.9 For costly allocation of permits (so-called auctioning),

several designs might potentially be selected. We chose an ascending clock auction

because it is simple to implement and to understand.10

Since the first two treatments (grandfathering with double auction and auctioning

with ascending clock auction) differ with respect to two design features (free vs.

costly allocation; double auction vs. ascending clock auction), it would not have been

possible to assign differences in performance either for different allocation schemes or

to different trading procedures. We therefore also conducted treatment GAC where

permits were allocated for free and re-allocated via an ascending clock auction

4.2 Experimental procedure

Upon arrival at the laboratory, subjects were randomly assigned to one of the com-

puter terminals. Instructions were then distributed and questions were answered.11

The subjects were informed that communication was not allowed until the end of the

session. In each session a group of 18 subjects participated mimicking polluting firms

that are subject to regulation. Each subject was allowed to participate in only one

session.

Each session consisted of two parts. In the first part, four rounds of a tax treatment

were conducted. The purpose of this first part of the session was to make the subjects

familiar with the pure investment decision without facing the strategic uncertainty

induced by the auction, notably regarding the permit price. The design and the

results of the tax treatments are shown in Appendix A. In the second part of the

9See ? and ?.
10We are aware that such uniform price auction might be inefficient since bidders may have an

incentive to bid under their demand function in order to keep the clearing prices down. ? proposes
an alternative ascending-clock auction with Vickrey pricing that achieves full efficiency. However, as
Cramton and Kerr (2002) state, in the absence of market power the inefficiency that results from an
ascending clock auction with uniform pricing is likely to be insignificant and it is easier to implement.

11Instructions are included in the Appendix.
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session subjects participated in one of three different treatments AAC, GDA, or GAC,

to be precisely described below. In this second part subjects played six rounds of a

one-shot game. Each round consisted of the following three stages:

Stage 1: Technology assignment and initial permit allocation Each subject

is randomly assigned an initial technology k = T1, ..., T5, where four subjects

each are endowed with technologies T1, T3, and T5 and three subjects each with

technologies T2 and T4. Moreover, in these treatments with grandfathering, i.e.

GDA and GAC, permits are allocated depending on the firms’ initial technol-

ogy as displayed in table 2. Both the initial distribution of technologies and the

criteria for permit allocation is common knowledge to the subjects.

Firm type T1 T2 T3 T4 T5

Number of firms 4 3 4 3 4

Permits allocated 8 7 6 5 4

Table 2: Firm type (according to the initial technologies), number of firms per type,
and number of permits allocated to each firm in the treatments with grandfathering.

Stage 2: Investment decision Subjects simultaneously decide whether to keep the

initial technology k = T1, ..., T5 or adopt to the new technology a and to pay

the corresponding investment cost F = 580.

Stage 3: Permit auctioning Subjects participate in a permit auction (full compli-

ance with the regulation was imposed and banking of permits was not allowed).

The total number of auctioned (allocated) permits are fixed and known to the

subjects during the experiment.

At the end of the session the final payoff to the subjects was computed by randomly

choosing one round from the first part (tax treatment) and one round from the second

part (permit treatment). Each session lasted approximately 2.5 hours and the average

payoff was around e35.

In the following we will introduce the details of the implemented permit trading

treatments:
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In the GDA treatment a single-unit double auction is implemented. The permit

market opens for three minutes for subjects to buy and sell permits. This they can

do either by submitting bid(s) or offer(s), or by accepting standing bid(s) or offer(s).

Every transaction refers only to one permit. However, subjects can trade as many

permits as desired within the three minutes. Once the market is closed, the profit for

firm i in round t is given by

Πi,t =






Π0 − C i (ei,t, a)− x− F if the firm invests in round t,

Π0 − C i (ei,t, k)− x if it does not invest in round t,

where k ∈ {T1, ..., T5, a} denotes the index of the abatement technology, and x is

defined as x =
�J

j=1 σi,j,tZi,j,t. Moreover, J is the number of trades, σi,j,t is the price

that subject i pays or receives in trade j, and Zi,j,t ∈ {1,−1} indicates whether he/she

buys (Zi,j,t = 1) or sells (Zi,j,t = −1) a permit. Net trades sum up to
�J

j=1 Zi,j,t =

ei,t − êi where êi is subject i�s initial endowment of permits.

In the AAC treatment, permits are auctioned off through an ascending clock auc-

tion. In this procedure the initial price is set at 5 ECU. Subjects then have 40 seconds

to place their demand for permits (their requested number of permits) at that price.

If aggregate permit demand exceeds supply set by the regulator (108 permits), the

price is increased by 10 ECU (so that the next price is 15 ECU, then 25 ECU, and so

on). The auction then continues until the quantity required by the firms is smaller

or equal to permit supply. If this is the case, the auction ends and each subject gets

its demanded quantity at this last price.12

Finally, in the GAC treatment the procedure is similar to the AAC treatment,

except that for the given price the subjects now have 40 seconds to place their demand

(requested number of permits) or their supply (number of permits they offer). If

12If a subject does not submit her demand in time, the computer program automatically submits
the subject’s demand at the previous price. If the subject does not submit her demand at the initial
price (5 ECU), the computer program automatically submits her maximum emission level. However,
this hardly ever occurred.
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aggregate demand is smaller or equal to aggregate supply, the auction ends and each

bidder obtains his/her demanded quantity at this final price.13

The profit of firm i in round t for the treatments with ascending clock auction

(AAC, GAC) is given by

Πi,t =






Π0 − C i (ei,t, a)− σ(ei,t − êi)− F if the firm invests in round t,

Π0 − C i (ei,t, k)− σ(ei,t − êi) if it does not invest in round t,

where σ is now the uniform price resulting from the auction.

4.2.1 Eliciting risk attitudes

At the end of the session we conducted a test to elicit the subjects’ risk attitudes. For

this purpose we employed the low-payoff menu of paired lotteries (Holt and Laury,

2002), which ranks risk attitudes on a scale ranging from 1 (high degree of risk-

loving) to 10 (high degree of risk-aversion). A coefficient of 4 denotes risk neutrality.

Appendix B provides a detailed description of the menu. The distribution of risk

coefficients in our sample is displayed in Figure 2.

5 Results

We are particularly interested to see whether there are significant differences in per-

formance between the different treatments regarding (i) optimal investment behavior,

(ii) efficient allocations of permits (reflected in the total abatement costs given the

investment decision), and (iii) minimization of total abatement cost. For most of the

analysis, we employ the robust rank-order test (F-P test following Fligner and Poli-

13If demand is equal to supply, then each offerer also sells her offered quantity. However, if demand
is smaller than supply, a random mechanism determines which of the offerers will sell their offered
quantities and which will not.
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Figure 2: The distribution of the risk-attitude coefficients (average: 5.02, standard
deviation: 1.58). Coefficients in the range 1-3 indicate risk loving, a coefficient of 4
indicates risk neutrality, and coefficients in the range 5-10 indicate risk aversion.

cello, 1981)14 to compare between treatments. Since we employed 18 firms in each

session and the firms are matched with different initial technologies each round, we

treat every round in each session as an independence observation.

5.1 Investment behavior

We start by evaluating investment behavior. First we compare the aggregate invest-

ment patterns under the different treatments with the theoretical optimum. In a

second step, we will study what factors drive individual firms’ investment behavior.

5.1.1 Aggregate behavior

For all three implemented treatments, Figure 3 displays the firms’ investment deci-

sions depending on the assigned initial technology.

Note that in all treatments most of the firms using technologies T1 and T2 decide to

adopt the low emission technology a, whereas the number of investing firms decreases

as we move to technologies T3, T4 and T5, i.e. those with initially lower baseline emis-

sions and lower marginal abatement costs. In fact, although the observed investment

14The F-P test, like the popular Wilcoxon-Mann-Whitney (WMW) test, tests for the difference
in medians of two samples. But, unlike the WMW test, it also works well for samples with different
variances (see Feletovich, 2003).
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Figure 3: Percentage of firms investing in technology a per initial technology k =
T1, ..., T5.

pattern is close to the socially optimal allocation (which is also an equilibrium)15,

we find that for all treatments implemented the observed investment patterns differ

significantly (at the 5% level)16 from the first-best investment pattern (where only

those firms with technologies T1 and T2 should invest).

If we compare between treatments we find that in the ascending auction mechanism

with and without grandfathering (i.e. comparing the AAC and the GAC treatments)

the investment patterns differ significantly 17 In particular, for the AAC mechanism,

where permits are initially auctioned off and no re-allocation mechanism is provided,

we observe significant under-investment among the subjects having initially been

endowed with relatively dirty technologies (T1 and T2) but over-investment among

the subjects with initially relatively clean technologies (T3, T4 and T5). In the later

case the different sessions between between 8% and 50% of firms with the relatively

clean technologies (T3, T4 and T5) decided to invest. TILL, I DON’T LIKE THE

WAY THIS (LAST) PARAGRAPH IS WRITTEN. HERE IS MY SUGGETSION.

Using an F-P test to compare between the different allocation mechan-

sims (i.e. comparing the AAC and GAC treatments), we find that the

15In particular, averages of 70%, 86%, and 84% of the investment decisions in the AAC, GAC,
and GDA treatments, respectively, follow the behavior predicted by the efficient equilibrium.

16We used a one-sample sign-rank test.
17Between 10% and 5% significnace level comparing the F-P test statistics with their simulated

critical values for small samples (Feltovich, 2005).
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GAC perform closer to the first best investment pattern than the AAC

treatment.18 In other words, for the AAC mechanism, we observe signif-

icant under-investment among the subjects having initially been endowed

with relatively dirty technologies (T1 and T2) and over-investment among

the subjects with initially relatively clean technologies (T3, T4 and T5).

Finally we compare the effect of the permit re-allocation mechanism, once permits

have been distributed for free among the firms. In other words, we compare the GAC

and the GDA treatments. Employing the F-P test again, we do not find a significant

difference in the subjects’ investment behavior at the 10% level. We summarize our

findings as follows.

Result 1a: If permits are initially grandfathered, the observed investment pattern

is closer to the socially optimal allocation compared with the investment pattern ob-

served when permits are initially auctioned off.

Result 1b: With initial grandfathering, the market institution used to re-allocate

permits within an industry (ascending clock vs. single-unit double auction) has no

significant effect on the pattern of technology adoption.

5.1.2 Individual behavior

To better understand the factors influencing investment behavior in the different

treatments, we employ the random-effect Probit model to explain the subjects’ invest-

ment probability in each treatment. As explanatory variables we include the initial

technology assigned (a discrete variable ranging between 1 and 5 for the five initial

technologies), the average price in the previous round, the risk-attitude coefficient

ranging between 1 (high degree of risk-loving) and 10 (high degree of risk-aversion),

18Between 10% and 5% significnace level comparing the F-P test statistics with their simulated
critical values for small samples (Feltovich, 2005).
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Treatment AAC GAC GDA

Technology (t) -0.71*** -1.42*** -1.07***
(0.13) (0.35) (0.18)

Risk-attitude coef. -0.02 -0.19 0.40**
(0.12) (0.19) (0.18)

Average price (t− 1) 0.02** -0.01 0.03
(0.01) (0.02) (0.03)

Period -0.09 -0.53 0.15
(0.09) (0.30) (0.22)

Cons 1.31 7.74** -2.32
(0.95) (2.58) (3.36)

�Σu 0.98 0.53 0.83
(0.26) (0.49) (0.27)

�ρ 0.49 0.22 0.41
(0.13) (0.31) (0.15)

Wald-χ2(4) 30.88*** 16.71*** 35.66***

Table 3: Random-effect Probit estimations of the different treatments (std. err. are
given in parentheses). The dependent variable: investment in round t. **, and ***
denote significance at the 5%, and 1% levels, respectively.

and the round number.19

First we study the effect of the initial technology on the probability to invest. Since

firms endowed with dirtier technologies gain more from adopting the new technology,

we expect the firms’ investment probability to decrease when initially being endowed

with a cleaner technology. The results reported in Table 3 confirm our hypotheses for

all implemented treatments. However, this effect differs among the different mech-

anisms. In the mechanisms with freely allocated permits (GDA and GAC) the role

of the technology is much stronger than in the AAC treatment where permits are

auctioned-off and must be purchased.20

Secondly, since the permit price observed in the market is the only information the

subjects have about previous aggregate investment, it is natural to conjecture that

firms will be more likely to invest if they expect high prices in the permit market.

Therefore, our hypotheses is that a higer permit price in one round will increase

the firms’ investment probability in the next round. However, this hypothesis is

19We omitted the data of two subjects from the AAC, and GAC treatments and one subject from
the GDA treatment who did not fill in the risk test.

20A t-test show a statistically significant difference between the coefficients for the technology
among treatments.

17



only confirmed when permits are initially auctioned off and are note given away for

free (AAC treatment). One possible explanation is that the initial grandfathering

allocation is closer to the final allocation and therefore reduces the firms’ dependence

on the auction compared to the situation where firms have to purchase all the permits.

Finally, investment reduces the firms’ dependency on the permit price and might

thus be perceived as a kind of insurance against unfavorable scenarios. Thus, we ex-

pect risk aversion to influence the firms’ investment decisions. We observe, however,

that a higher degree of risk aversion increases the investment probability only when

permits are initially grandfathered and re-allocated through a double auction (GDA

treatment). This result could signal systematic differences in the auction mechanism

implemented: discriminatory vs. uniform pricing. Whereas in the double auction

traders observe a range of transactions prices as trading takes place, in the ascending-

clock auction all permits are traded at a single price, which may be perceived as a

less noisy signal by the firms. We can summarize our findings as follows:

Result 2a: The firms’ initial technology is the main determinant of their invest-

ment decisions, and therefore, those firms with higher marginal abatement cost have

a higher the probability to adopt the new technology.

Result 2b: A higher permit price in the previous round only affects the firms’ in-

vestment decisions when permits are initially auctioned off (i.e. under AAC), but not

in the case of initial grandfathering (i.e. under GAC and GDA).

Result 2c: When permits are initially grandfathered and re-distributed among firms

through a double auction (i.e. under GDA), investment increases as firms are more

risk averse.
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5.2 The permit market

TILL, HERE I THINK THAT WE SHOULD DIFFERENTIATE THIS SECTION

FROM THE EFFICIENCY - I MARK IN BOLD THE PARTS WHICH I THINK

SHOULD NOT BE THERE

In this section we investigate the performance of the different permit

trading institutions implemented. One important aspect is to analyze

whether a given trading institution is able to reflect the firms’ invest-

ment decision by the permit price. MY SUGGESTION: In this section we

charecterize the different treatments according to prices and trading vol-

ume. One important aspect is whether these prices and volumes reflect

the industry’s technological level (or the firms’ investment pattern).

Note that in order to evaluate market efficiency, we cannot use the theo-

retically optimal equilibrium price computed in section 4 as a benchmark,

since that price results from the theoretically optimal investment pattern21.

But we have already seen that firms do not behave optimally concerning

technology adoption. Therefore, in order to evaluate the permit-market

performance, we calculate the theoretical equilibrium prices and trade vol-

umes given the observed investment pattern. Table 4 shows the observed

average prices and volumes in the first two columns22 and the efficient

prices and volumes expected in the last two columns. I THINK THAT

WE SHOULD NOT SPEAK ABOUT EFFICIENCY IN THIS SUBSEC-

TION SINCE WE HAVE A SECTION ONLY ABOUT THAT.

MY SUUGESTION, Note that in order to evaluate the observe permit prices

and volumes, we cannot use the theoretically optimal equilibrium price and volumes

21If only firms of type T1 and T2 invest in the advanced technology, we expect an equilibrium
permit price equal to 55 ECU. See Figure 1.

22The reported prices and volumes are averaged across sessions and rounds within a given treat-
ment.
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Treatment
Observed Expected

Price Volume Price Volume

AAC 55.00 103.81 45.45− 53.63 108
(11.83) (5.32) (8.20− 9.24) (−)

GAC 60.00 32.87 49.16− 59.16 35
(10.69) (5.66) (8.86) (3.42)

GDA 64.84 44.16 49.16− 59.16 35.41
(10.01) (10.56) (7.93) (3.77)

Table 4: Comparison of mean observed prices and trade volumes of permits with the
expected prices and trade volumes, given the firms’ investment pattern (std. dev. are
given in parentheses).

computed in section 4 as a benchmark, since that price results from the theoretically

optimal investment pattern23. But we have already seen that firms do not behave op-

timally concerning technology adoption. Therefore, we should calculate the theoret-

ical equilibrium prices and trade volumes given the observed investment pattern.

Table 4 shows the observed average prices and volumes in the first two columns24 and

the efficient (expected) prices and volumes in the last two columns.

Table 4 shows that in all treatments the permit market suffers from significant

over- pricing, that is, the observed prices are higher than the expected price reflecting

the technologies used by the firms. This is particularly true in those treatments with

grandfathering (GAC and GDA treatments). Looking at the observed volumes, we

find lower volumes than expected in those treatments using the ascending-clock auc-

tion to allocate (AAC treatment) or re-allocate (GAC treatment) permits, whereas

excess volumes are observed when trade takes place via double auction (GDA treat-

ment). However, in this last case it is important to distinguish between total and

net trade volumes. Whereas the net trade volume refers to the permit variation,

that is, the difference between the permits held at the beginning and at the end of

the auction, the total trade volume refers to the total number of transactions. The

difference between net and total volume can be considered as speculative trading,

23If only firms of type T1 and T2 invest in the advanced technology, we expect an equilibrium
permit price equal to 55 ECU. See Figure 1.

24The reported prices and volumes are averaged across sessions and rounds within a given treat-
ment.
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Treatment
Observed volume

Expected volume
Net Total

GDA 30.83 44.16 35.41
(7.95) (10.56) (3.77)

Table 5: Mean (std. dev.) of observed net trading in comparison with total trading
in the GDA treatment.

defined as one subject buying and selling permits in the same round in order to gain

from price volatility within a given trading period. From Table 5 we observe that

speculative trading represents around 30% of total volume. Indeed, the net volume

observed is lower than expected, which is in line with the other two implemented

mechanisms. Moreover, also the observed price variance is higher than expected. In

fact, from tables 4 and 5 we find a negative relationship between price dispersion and

net trading.25

We summarize our findings on the permit market performance as follows:

Result 3a: Given the firms’ investment pattern all permit trading mechanisms suffer

from over-pricing and insufficient (net) trading.

Result 3b: When the double auction mechanism is used to re-allocate permits among

firms, speculative trading emerges and generates excess volume in the permit market.

Let us finally take a closer look into speculative behavior. As indicated above, we

define a speculator as a trader who sells and buys permits within the same round.

In this respect we can say that firms tried to engage in arbitrage. In contrast to

other financial assets, an emission permit can be considered as a production input.

Therefore we would expect that the production technology influences the decision

to speculate. Table 6 summarizes the results of a random effect Probit estimation

25In a related experimental setting, Ben-David et al. (1999) also observe that price variability is
inversely related to trade volume and recommend a uniform price auction in order to increase market
liquidity.
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looking for factors that influence speculative trading. Interestingly, it is mainly the

risk attitude that drives speculation: the lower the risk aversion, the higher the

probability to speculate. By contrast, the initial technology, the investment decision,

and also the previous round’s permit price have no significant impact on speculative

trade.

Furthermore, it is interesting to observe that speculators did not manage to out-

perform non-speculators. On average speculators even earned a lower profit than

those who bought or sold only once.26 Our findings give rise to the next results:

Result 3c: The lower is the individual’s risk-aversion, the higher the probability

that he/she will engage in a speculative behavior in the permit market.

Result 3d: On average speculators earn a lower profit than non-speculators.

6 Efficiency comparison

TILL; I CHANGED THE NUMBERS OF THE RESULTS IN THIS SECTION TO

BE 4a, 4b and 4c. I THINK THAT IT IS MORE CONSISTENT WITH THE RE-

SULTS BEFORE:

An important issue, being also of political interest, is to compare the different

allocation and trading schemes with respect to efficiency. A typical efficiency measure

to test the performance of mechanisms in economic experiments is the ratio of the

theoretical minimal social cost divided by the social cost induced by the observed

behavior in the experiment. In the mechanisms considered here, two sources for

potential inefficiencies occur: suboptimal investment decisions and suboptimal permit

26The mean profit (average profit per round) obtained by those subjects doing speculative (non
speculative) trading is 702.86 ECU (785.60 ECU). The result is significant at the 1% significance
level (using an F-P test or a t-test).
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Variable Coef. (Std. Err.)

Technology (t) -0.11

(0.12)

Risk-attitude coef. -0.28**

(0.14)

Investment (t) -0.54

(0.37)

Average price (t− 1) 0.04

(0.02)

Period -0.00
(0.18) Cons -0.98

(2.80)

Subjects 35

�Σu 0.97

(0.24)

�ρ 0.48

(0.12)

Wald-χ2(5) 15.44***

Table 6: Random-effect Probit estimation of the GDA treatment. The dependent
variable: speculation in round t (std. err. are given in parentheses). **, and ***
denote significance at the 5%, and 1% levels, respectively, and “n.s” means not sig-
nificant at the 10% or lower level.
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AAC GAC GDA

ERPermit 0.68 (0.11) 0.81 (0.04) 0.84 (0.06)

ERInvest 0.92 (0.04) 0.93 (0.02) 0.92 (0.03)

ERTotal 0.79 (0.06) 0.86 (0.03) 0.85 (0.05)

Table 7: Mean (Std. Dev.) of the different efficiency ratios

allocations through auction or bilateral trade. It is therefore instructive to decompose

these two sources for potential inefficiencies.

6.1 Efficiency in the permit market

We begin by looking at the efficiency of permit allocation. For this purpose, we

denote the total variable abatement cost as TVAC, i.e. TVAC=
n�

i=1
C i(ei,κ(i)),

where κ(i) ∈ {k(i), a} is the actual technology used by firm i after the invest-

ment decision. Let κ = (κ(1), ...,κ(n)) be the technology profile after the invest-

ment stage. Further κobs = (κobs(1), ...,κobs(n)) is the observed technology profile

while κ∗ = (κ∗(1), ...,κ∗(n)) is the efficient one. Additionaly, (INSTEAD OF

FURTHER) we use eobs = (eobs1 , ..., eobsn ) to denote the observed emission-permit

allocation, and e∗(κ) to denote the optimal emission-permit allocation contingent on

a given the technology profile κ. Then TV AC(eobs,κobs) =
n�

i=1
C i(eobsi ,κobs(i)) is the

observed TVAC, while TV AC(e∗(κobs),κobs) =
n�

i=1
C i(e∗i (κ

obs),κobs(i)) is the theoret-

ically minimal TVAC contingent on the observed investment profile κ.

Permit-market efficiency is now defined by the ratio of the expected TVAC con-

tingent on the observed investment profile to the observed TVAC , formally:

ER
Permit =

TV AC(e∗(κobs),κobs)

TV AC(eobs,κobs)

The permit-market efficiency-ratios resulting from our three allocation mechanisms

are displayed in the first row of Table 7.

A pairwise application of an F-P-test shows that grandfathering outperforms auc-
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tioning independently of how the permits are reallocated.27 By contrast, once permits

are issued for free, there is no significant difference between the auction mechanisms.

More precisely GDA and GAC do not differ at the 10% level. An explanation for the

good show of grandfathering in comparison with pure auctioning (i.e. without free

allocation) may be that the initial allocation under grandfathering generates some

kind of anchoring effect, since compared with auctioning, the initial allocation is not

so far away from the efficient one. We summarize our findings as follows:

Result 4a: Grandfathering with initial allocation of permits proportional to the

maximal emission levels (EMAX) leads to higher final permit-market efficiency than

pure auctioning.

Note that I WOULD OMIT AND START LIKE THAT: The fact that

grandfathering with ascending clock auction (GAC) outperforms pure auctioning

(AAC) contradicts the celebrated theoretical result stating that the final allocation

of permits is independent of the initial allocation. Although this is not the particu-

lar focus of this paper, our results show in passing that this theoretical result does

not necessarily hold, but rather that the final allocation is biased through the initial

one. CAN WE GIVE OTHER REFERENCES? THERE MUST BE RELATED RE-

SEARCH RESULTS. WE COULD WRITE THEN: ”this is in line with the findings

of XX and YY who found that”.

6.2 Efficiency of investment

In a next step we investigate investment efficiency. To separate this from the al-

location efficiency, we look at the counter-factual total abatement cost, including

investment, that will result if an efficient allocation emerges through permit trad-

ing. For this purpose we define: I = (I1, ..., In) with Ii ∈ {0, 1} as the investment

27At the 1% significance level.
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pattern, where Ii = 1 if subject i invests and Ii = 0, otherwise. Further we write

I∗ = (I∗1 , ..., I
∗
n) for the optimal investment pattern, and Iobs = (Iobs1 , ..., Iobsn ) for the

observed one. Clearly I∗ and Iobs induce the corresponding technology profiles κ∗ and

κobs. Then we can define efficiency ratio of investment as the ratio between the low-

est possible total abatement cost, including investment cost, and the observed total

abatement cost, given the counterfactual that emissions are allocated efficiently.

ER
Invest =

TV AC(e∗(κ∗),κ∗) + F n
i=1I

∗
i

TV AC(e∗(κobs),κobs) + F n
i=1I

obs
i

In the second row of Table 7 we see that the investment efficiency ratios circles

around (INSTEAD: are around) 93% for (INSTEAD: in) all treatments. In

fact, an F-P test shows that there no significant difference between any pair of treat-

ments. This is surprising since in Result 1a we found that the investment patterns

do significantly differ. The reason for this puzzle is that under the AAC treatment

there is under-investment among those subjects with initial technologies T1 and T2

and over-investment by those with T3, T4, and T5. The total number of firms invest-

ing, however, is close to the efficient number. Therefore the suboptimal investment

pattern does not impact so much on investment efficiency. We summarize our result

as follows:

Result 4b: There is no significant difference between all mechanisms with respect

to investment efficiency.

6.3 Overall efficiency

Finally we look at total efficiency, measured as the ratio of the lowest possible total

abatement cost divided by the observed total abatement cost.

ER
Total =

TV AC(e∗(κ∗),κ∗) + F n
i=1I

∗
i

TV AC(eobs,κobs) + F n
i=1I

obs
i
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The results are displayed in the third row of Table 7. Here we see again free

allocation of permits (GDA and GAC) outperforms pure auctioning.28, while there

is no significant difference between GDA and GAC. The reason that free allocation

performs better than pure auctioning obviously results from corresponding permit-

market efficiency.29 We summarize our result as follows:

Result 4c: Mechanisms with free allocation of permits (grandfathering) leads to

higher final total efficiency than pure auctioning.

7 Concluding Remarks

The aim of this study was to investigate by methods of experimental economics

whether emission permit markets provide efficient incentives for polluting firms to

adopt cleaner technologies. In particular, we have been interested in the performance

of different institutional frameworks, notably the choice of the initial allocation of per-

mits (costly vs. free) and the choice of auction design and how these affect investment

incentives.

We find that the firms’ overall performance with respect to investment under trad-

able permits is remarkably good, even though we observe some under-investment by

inefficient firms and some over-investment by less inefficient firms.30 However this

deviation from the first-best has little impact on the investment efficiency

measured by the ratio of minimal total abatement cost, including invest-

ment costs, and observed total abatement cost, contingent on a counter-

factual efficient allocation of permits. I FIND THIS CONFUSING. MY

28These differences are significant at the 1% level.
29Note that the total efficiency cannot simply be written as the product of permit-market efficiency

and investment efficiency, the reason being that E − Ratioinvest and E − Ratiototal contain the
investment cost while E − Ratiopermit does not. To relate E − Ratiopermit and E − Ratioinvest to
E − Ratiototal we had to normalize the product E − Ratiopermit × E − Ratioinvest by the factor

n
i=1ACi(e

obs
i ,κobs

i )
n
i=1ACi(eobsi ,κobs

i )+n
i=1I

obs
i F

/
n
i=1ACi(e

∗
i (κ

obs),κobs
i )

n
i=1ACi(e∗i (κ

obs),κobs
i )+n

i=1I
obs
i F

the values of which, however, are of no further

interest.
30A similar result has been found by Gangadharan et al. (2010).
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SUGGESTION: The good showing of the treatments with grandfather-

ing in comparison with the pure auctioning treatment regarding the first

best investment pattern does not necessary imply that the treatments

with grandfathering outperform the pure auctioning concerning the adop-

tion of new technology. In fact, when looking at the investment efficiency

(given optimal permit allocation) we do not find differences between the

treatments.

HERE IS AGAIN PART THAT I DONT LIKE: In contrast to theoret-

ical predictions, we find however that the treatments with an initial free

allocation of permits (grandfathering) performs better than pure auction-

ing. I SUGGEST THE FOLLOWING: However, regarding the efficiency

in allocation of permits (for a given technological level), we find that the

treatments with an initial free allocation of permits (grandfathering) per-

forms better than pure auctioning. The reason may consist in the fact that

due to proportionally allocating the permits to the business-as-usual emission levels,

the initial allocation under grandfathering is much closer to the efficient one than is

the case under pure auctioning. On the other hand, once permits are allocated for

free, we do not observe any difference in the allocation mechanism, i.e. it does not

matter whether permits are traded by a double oral auction or are allocated to an

ascending bid auction. This result is remarkable because it justifies abstraction from

the particular auction design, as performed in many theoretical papers and textbooks.

Regarding total abatement cost, i.e. abatement and investment costs, the treat-

ments using grandfathering scheme outperform the treatment using the pure auc-

tioning scheme. This result is driven by the higher permit-market efficiency. This

is particularly interesting in light of most economists preference of auctioning over

grandfathering (see, for instance, Cramton and Kerr, 2002).31 The reason for the good

31There are nevertheless strong reasons to favor auctioning over grandfathering because auction
revenues can contribute to lowering the costs of raising public funds that arise elsewhere through
distortionary taxes. This effect as known as the ‘weak double dividend’ (see Goulder, 1995).
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showing of the grandfathering scheme may be that if permits are initially allocated

in a corrective way (i.e. firms which pollute more receive more permits), it reduces

the dependency of the firms on the auction results.

In our experimental design we endowed the firms with asymmetric technologies

and all firms are relatively small compared to the whole market, and thus have little

market power. Montero (2002a,b) has shown that the initial allocation does affect the

firms’ investment decisions if firms can exercise market power on either the permit

or the output market. While for the European CO2 market even the large utilities

are relatively small compared to the whole CO2 emission permit market, in other

existing permit markets, notably the American SO2 market (see Rico, 1995), large

buyers and sellers of permits exist. Further research is therefore needed to cast light

on the question whether institutional design matters with respect to investment in-

centives when firms do exercise market power. In this respect, it may be interesting

to draw on the design by Godby et al. (1999) and Godby (2000) to investigate the

incentives for adopting a low-pollution technology. Another issue we still know little

about is the way in which the degree of asymmetry among firms affects investment

efficiency. As stressed by Requate and Unold (2003), complete symmetry may in-

duce a coordination problem with respect to which firms will invest and which will

not. Strategic uncertainty may induce both over- and under-investment. Even in

our experiment with its rather asymmetric firms, strategic uncertainty could not be

eliminated completely. This uncertainty increases with greater symmetry among the

firms. In the light of the relative paucity of experimental literature in this area, a

systematic investigation of this issue is certainly worth pursuing.
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A The Tax Treatments

Every experimental session started with a tax treatment (“Part I” in the instruc-

tions). Only then did it proceed with the auction treatment. The structure of the

tax treatment is similar to that of the permit auction treatments, the only difference

being that the government imposes a tax per emission that is equal for all firms (in-

stead of participating in an auction). The idea of conducting the tax treatment is to

make subjects familiar with the setting (but without the uncertainty involved in the

auctions). Also, the tax treatment enables us to evaluate whether the subjects have

understood the setting before we proceed with the actual experiment.

Under the assumption that the regulator anticipates the new technology, we set

the ex-ante optimal tax rate equal to τ = 55. According to the above settings, the

profit of firm i in round t is the following:

Πi,t =






Π0 − C i (ei,t, a)− τei,t − F if invested in round t,

Π0 − C i (ei,t, k)− τei,t if did not invest in round t,

where k = T1, ..., T5 and a denotes the advanced abatement technology.

Since the tax treatment is basically a maximization problem, non-optimal decisions

by the subjects are considered ‘errors’. Consequently, we identify two types of error,

(i) a non-optimal abatement decision, i.e., a firm abates more or fewer units than

is optimal under the given tax rate and (ii) a non-optimal investment decision, i.e.,

either a firm invests although it shouldn’t, or a firm doesn’t invest although it should.

Table A.1 shows the percentage of errors in the first and last rounds of the treatment.

% of investment errors % of abatement errors

First round 19.12 26.87

Last round 7.85 8.79

Table A.1: Percentage of errors in the first and the last rounds of the tax treatments
(a total of 126 subjects).

Table A.1 illustrates that the percentage of errors is substantially lower in the last
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round in comparison with the first round, implying that at the end of the treatment

the subjects have a much better grasp of the economic situation. At the end of the

treatment, fewer than 10% of the decisions made by the subjects are classified as

erroneous.

B Holt and Laury’s (2002) Menu of Paired Lottery

Holt and Laury’s (2002) low payoff menu of paired lottery (see Figure B.1) requires

subjects to choose between two lotteries: A and B. The ‘safer’ lottery A includes

a probability of winning a high payoff of e2 and a (complementary) probability of

wining a low payoff of e1.6.32 Similarly, the ‘riskier’ lottery B includes a probability

of winning a high payoff of e3.85 and a (complementary) probability of wining a low

payoff of e0.1. The probabilities of wining the high (and low) payoffs are the same for

both lotteries. The probability of winning the high payoff gradually increases during

the lottery-choice menu in increments of 10%, proceeding from a 10% probability of

wining the high payoff and a 90% probability of of wining the low payoff in the first

lottery-choice, to a 100% probability of winning the high payoff and a 0% probability

of winning the low payoff in the last choice of the menu. As the probability of winning

the high payoff in both lotteries increases, subjects are expected to switch from A

to B since the expected value in lottery B increases more than it does in lottery A.

For instance, a risk-neutral subject who chooses the lottery according to the highest

expected value will choose A exactly four times before switching to B. Consequently,

from the pattern of choices observed, a risk-attitude coefficient is computed which

corresponds to the number of consecutive choices in lottery A before switching to

lottery B.

32In the original study by Holt and Laury (2002) the payoffs are in US$.
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Figure B.1: Holt and Laury’s (2002) menu of paired lottery
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